期刊文献+
共找到5,897篇文章
< 1 2 250 >
每页显示 20 50 100
Research on an Air Pollutant Data Correction Method Based on Bayesian Optimization Support Vector Machine
1
作者 Xingfu Ou Miao Zhang Wenfeng Chen 《Journal of Electronic Research and Application》 2025年第4期190-203,共14页
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by... Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data. 展开更多
关键词 Air quality monitoring Data calibration Support vector regression Bayesian optimization Machine learning
在线阅读 下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques 被引量:1
2
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
原文传递
Anti-interference beam pattern design based on second-order cone programming optimization 被引量:1
3
作者 戴文舒 鲍凯凯 +1 位作者 王萍 王黎明 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第3期255-260,共6页
When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be op... When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming. 展开更多
关键词 anti-interference beam pattern second-order cone programming optimization (SOCP) weak signal detection
在线阅读 下载PDF
A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation
4
作者 Fangzhen Ge Yating Wu +1 位作者 Debao Chen Longfeng Shen 《Intelligent Automation & Soft Computing》 2024年第2期189-211,共23页
It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence... It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive. 展开更多
关键词 Many-objective optimization evolutionary algorithm Pareto dominance reference vector adaptive niche
在线阅读 下载PDF
On Second-order Sufficient Conditions in Constrained Nonsmooth Optimization
5
作者 WANG FENG-LING SONG WEN Li Yong 《Communications in Mathematical Research》 CSCD 2010年第3期203-210,共8页
In this paper, we establish a second-order sufficient condition for constrained optimization problems of a class of so called t-stable functions in terms of the first-order and the second-order Dini type directional d... In this paper, we establish a second-order sufficient condition for constrained optimization problems of a class of so called t-stable functions in terms of the first-order and the second-order Dini type directional derivatives. The result extends the corresponding result of [D. Bednarik and K. Pastor, Math. Program. Ser. A, 113(2008), 283-298] to constrained optimization problems. 展开更多
关键词 second-order optimality condition g-stable function Dini directional derivative isolated minimizer
在线阅读 下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
6
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION
在线阅读 下载PDF
Optimal impulsive rendezvous for highly elliptical orbits using linear primer vector theory 被引量:3
7
作者 Maozhang ZHENG Jianjun LUO Zhaohui DANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期194-207,共14页
In this paper,minimum-fuel rendezvous is investigated for the case in which the reference orbit is highly elliptic.To this end,the well-known Tschauner-Hempel equations are used to describe the relative motions betwee... In this paper,minimum-fuel rendezvous is investigated for the case in which the reference orbit is highly elliptic.To this end,the well-known Tschauner-Hempel equations are used to describe the relative motions between rendezvous spacecraft and the target.Lawden’s primer vector theory is then applied on this linear but time-varying system.The analytical solution of the required primer vector for this problem is then derived by using a recently developed method.For the existing non-optimal solutions which don’t satisfy the conditions,the methods are further designed to improve the performance by shifting impulses or adding a new one.Finally,two algorithms are developed for free-impulse time-fixed rendezvous problems.The first algorithm can determine the globally optimal trajectory with the optimal number of impulses.The second one enables for fast trajectory planning.The proposed algorithms have been successfully applied to coplanar and three-dimensional rendezvous problems in which the target is flying on highly elliptical orbits. 展开更多
关键词 Orbital transfer optimal trajectory Primer vector Tschauner-Hempel equations Globally planning Fast planning
原文传递
HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy 被引量:1
8
作者 Li Xiao Cheng-Wu Wang +4 位作者 Ying Deng Yi-Jing Yang Jing Lu Jun-Feng Yan Qing-Hua Peng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期991-1000,共10页
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel... AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation. 展开更多
关键词 traditional Chinese medicine diabetic retinopathy Harris Hawk optimization Support vector Machine syndrome differentiation
原文传递
Parameter selection of support vector machine for function approximation based on chaos optimization 被引量:18
9
作者 Yuan Xiaofang Wang Yaonan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期191-197,共7页
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results... The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation. 展开更多
关键词 learning systems support vector machines (SVM) approximation theory parameter selection optimization.
在线阅读 下载PDF
Identifcation of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine 被引量:14
10
作者 Zhou Jian Li Xibing +2 位作者 Hani S.Mitri Wang Shiming Wei Wei 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期701-707,共7页
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi... An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research. 展开更多
关键词 GOAF Risk identifcation Underground mine Prediction Particle swarm optimization Support vector machine
在线阅读 下载PDF
Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design 被引量:10
11
作者 Z.L.Huang Y.S.Zhou +2 位作者 C.Jiang J.Zheng X.Han 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期285-302,共18页
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici... Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method. 展开更多
关键词 Reliability-based design optimization(RBDO) Multidisciplinary design optimization(MDO) Incremental shifting vector(ISV) Decoupling algorithm Electronic product
在线阅读 下载PDF
Parameter selection of support vector regression based on hybrid optimization algorithm and its application 被引量:9
12
作者 Xin WANG Chunhua YANG +1 位作者 Bin QIN Weihua GUI 《控制理论与应用(英文版)》 EI 2005年第4期371-376,共6页
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters... Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods, 展开更多
关键词 Support vector regression Parameters tuning Hybrid optimization Genetic algorithm(GA)
在线阅读 下载PDF
A Metamodeling Method Based on Support Vector Regression for Robust Optimization 被引量:5
13
作者 XIANG Guoqi HUANG Dagui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期242-251,共10页
Metamodeling techniques have been used in robust optimization to reduce the high computational cost of the uncertainty analysis and improve the performance of robust optimization problems with computationally expensiv... Metamodeling techniques have been used in robust optimization to reduce the high computational cost of the uncertainty analysis and improve the performance of robust optimization problems with computationally expensive simulation models. Existing metamodels main focus on polynomial regression(PR), neural networks(NN) and Kriging models, these metamodels are not well suited for large-scale robust optimization problems with small size training sets and high nonlinearity. To address the problem, a reduced approximation model technique based on support vector regression(SVR) is introduced in order to improve the accuracy of metamodels. A robust optimization method based on SVR is presented for problems that involve high dimension and nonlinear. First appropriate design parameter samples are selected by experimental design theories, then the response samples are obtained from the simulations such as finite element analysis, the SVR metamodel is constructed and treated as the mean and the variance of the objective performance functions. Combining other constraints, the robust optimization model is formed which can be solved by genetic algorithm (GA). The applicability of the method developed is demonstrated using a case of two-bar structure system study. The performances of SVR were compared with those of PR, Kriging and back-propagation neural networks(BPNN), the comparison results show that the prediction accuracy of the SVR metamodel was higher than those of other metamodels under uncertainty. The robust optimization solutions are near to the real result, and the proposed method is found to be accurate and efficient for robust optimization. This reaserch provides an efficient method for robust optimization problems with complex structure. 展开更多
关键词 support vector regression METAMODELING robust optimization genetic algorithm
在线阅读 下载PDF
Nonlinear Optimization Method of Ship Floating Condition Calculation in Wave Based on Vector 被引量:4
14
作者 丁宁 余建星 《China Ocean Engineering》 SCIE EI CSCD 2014年第4期471-478,共8页
Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be ... Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results. 展开更多
关键词 ship floating condition vector operation regular wave nonlinear optimization DICHOTOMY accumulativechord length
在线阅读 下载PDF
ε-strongly Efficient Solutions for Vector Optimization with Set-valued Maps 被引量:10
15
作者 WANG Qi-liu 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期104-109,共6页
In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under ... In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained. 展开更多
关键词 vector optimization ε-strongly efficient point nearly cone-subconvexlike setvalued maps ε-strongly efficient solutions the theorem of scalarization optimality conditions
在线阅读 下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
16
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
Inflatable Wing Design Parameter Optimization Using Orthogonal Testing and Support Vector Machines 被引量:12
17
作者 WANG Zhifei WANG Hua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期887-895,共9页
The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing paramet... The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization. 展开更多
关键词 inflatable wing orthogonal test design parameter support vector machines optimization
原文传递
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
18
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
在线阅读 下载PDF
Multi-Step Model Predictive Control Based on Online Support Vector Regression Optimized by Multi-Agent Particle Swarm Optimization Algorithm 被引量:2
19
作者 TANG Xianlun LIU Nianci +1 位作者 WAN Yali GUO Fei 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期607-612,共6页
As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a mult... As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a multi-step model predictive control based on online SVR(OSVR) optimized by multi-agent particle swarm optimization algorithm(MAPSO) is put forward. By integrating the online learning ability of OSVR, the predictive model can self-correct and adapt to the dynamic changes in nonlinear process well. 展开更多
关键词 online support vector regression (OSVR) model PREDICTIVE CONTROLLER (MPC) MULTI-AGENT particleswarm optimization (MAPSO) nonlinear systems
原文传递
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
20
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部