When disturbed, the interaction between power grid and wind farm may cause serious sub/super-synchronous oscillation (SSO), affecting the security and stability of the system. It is therefore important to detect the t...When disturbed, the interaction between power grid and wind farm may cause serious sub/super-synchronous oscillation (SSO), affecting the security and stability of the system. It is therefore important to detect the time-varying amplitude and frequency of SSO to provide information for its control. The matching synchroextracting wavelet transform (MSEWT) is a new method proposed in this paper to serve this purpose. Based on the original synchrosqueezing wavelet transform, MSEWT uses a synchronous extraction operator to calculate the time-frequency coefficients and a chirp-rate estimation to modify the instantaneous frequency estimation. Thus, MSEWT can improve the concentration degree and reconstruction accuracy of the signal's time-frequency representation without iterative calculation, and can achieve superior noise robustness. After the time-frequency analysis and modal decomposition of the SSO by MSEWT, the amplitudes and frequencies of each oscillation component can be obtained by Hilbert transform (HT). The simulation studies demonstrate that the proposed scheme can accurately identify the modal parameters of SSO even in the case of noise interference, providing a reliable reference for stable operation of power system time-frequency.展开更多
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o...Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.展开更多
In recent years,much research has been focused on separating acoustic sources from their mixtures.Degenerate Unmixing Estimation Technique(DUET)is one of the widely popular meth-ods of Blind Source Separation(BSS)in u...In recent years,much research has been focused on separating acoustic sources from their mixtures.Degenerate Unmixing Estimation Technique(DUET)is one of the widely popular meth-ods of Blind Source Separation(BSS)in underdetermined scenarios.DUET is based on a signal recovery sparsity algorithm whose performance is strongly influenced by sparsity in the Time-Frequency(TF)domain.Noises and an several sources in mixtures limit the sparsity resulting in performance degradation in DUET.Here an enhanced strategy has been adopted by combin-ing DUET with adaptive noise cancellation utilising the Dual-Tree Complex Wavelet Transform(DTCWT)as a pre-processor and TF refinement utilising Synchroextracting Transform(SET)as a post-processor.This improves the sparsity of sources and energy concentrations in a TF rep-resentation.Results of the signal separation performance evaluation reveal that the proposed algorithm outperforms conventional DUET in signal separation,especially in real-time scenarios.展开更多
基金supported by National Natural Science Foundation of China(No.52077081)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011608).
文摘When disturbed, the interaction between power grid and wind farm may cause serious sub/super-synchronous oscillation (SSO), affecting the security and stability of the system. It is therefore important to detect the time-varying amplitude and frequency of SSO to provide information for its control. The matching synchroextracting wavelet transform (MSEWT) is a new method proposed in this paper to serve this purpose. Based on the original synchrosqueezing wavelet transform, MSEWT uses a synchronous extraction operator to calculate the time-frequency coefficients and a chirp-rate estimation to modify the instantaneous frequency estimation. Thus, MSEWT can improve the concentration degree and reconstruction accuracy of the signal's time-frequency representation without iterative calculation, and can achieve superior noise robustness. After the time-frequency analysis and modal decomposition of the SSO by MSEWT, the amplitudes and frequencies of each oscillation component can be obtained by Hilbert transform (HT). The simulation studies demonstrate that the proposed scheme can accurately identify the modal parameters of SSO even in the case of noise interference, providing a reliable reference for stable operation of power system time-frequency.
基金Supported by the National Natural Science Foundation of China(No.61901183)Fundamental Research Funds for the Central Universities(No.ZQN921)+4 种基金Natural Science Foundation of Fujian Province Science and Technology Department(No.2021H6037)Key Project of Quanzhou Science and Technology Plan(No.2021C008R)Natural Science Foundation of Fujian Province(No.2019J01010561)Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province 2019(No.JAT191080)Science and Technology Bureau of Quanzhou(No.2017G046)。
文摘Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.
文摘In recent years,much research has been focused on separating acoustic sources from their mixtures.Degenerate Unmixing Estimation Technique(DUET)is one of the widely popular meth-ods of Blind Source Separation(BSS)in underdetermined scenarios.DUET is based on a signal recovery sparsity algorithm whose performance is strongly influenced by sparsity in the Time-Frequency(TF)domain.Noises and an several sources in mixtures limit the sparsity resulting in performance degradation in DUET.Here an enhanced strategy has been adopted by combin-ing DUET with adaptive noise cancellation utilising the Dual-Tree Complex Wavelet Transform(DTCWT)as a pre-processor and TF refinement utilising Synchroextracting Transform(SET)as a post-processor.This improves the sparsity of sources and energy concentrations in a TF rep-resentation.Results of the signal separation performance evaluation reveal that the proposed algorithm outperforms conventional DUET in signal separation,especially in real-time scenarios.