Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f...Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance.展开更多
The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic,highlighting the growing importance of network security.Intrusion Detection Systems(IDS)are essential ...The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic,highlighting the growing importance of network security.Intrusion Detection Systems(IDS)are essential for safeguarding network integrity.To address the low accuracy of existing intrusion detection models in identifying network attacks,this paper proposes an intrusion detection method based on the fusion of Spatial Attention mechanism and Residual Neural Network(SA-ResNet).Utilizing residual connections can effectively capture local features in the data;by introducing a spatial attention mechanism,the global dependency relationships of intrusion features can be extracted,enhancing the intrusion recognition model’s focus on the global features of intrusions,and effectively improving the accuracy of intrusion recognition.The proposed model in this paper was experimentally verified on theNSL-KDD dataset.The experimental results showthat the intrusion recognition accuracy of the intrusion detection method based on SA-ResNet has reached 99.86%,and its overall accuracy is 0.41% higher than that of traditional Convolutional Neural Network(CNN)models.展开更多
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text...Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals.展开更多
Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially...Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.展开更多
Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion s...Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was experimentally validated on the publicly available KAIST dataset and compared with other existing methods. The experimental results demonstrate that our approach achieves favorable performance in various complex environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this paper.展开更多
Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and compl...Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and complementary information simultaneously,including gene expression profiles,spatial locations,and histology images.However,most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images.To fully leverage the multi-modal information,we propose a SPAtially embedded Deep Attentional graph Clustering(SpaDAC)method to identify spatial domains while reconstructing denoised gene expression profiles.This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives.Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets.SpaDAC is a valuable tool for spatial domain detection,facilitating the comprehension of tissue architecture and cellular microenvironment.The source code of SpaDAC is freely available at Github(https://github.com/huoyuying/SpaDAC.git).展开更多
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn...Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches.展开更多
Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious oper...Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious operations,such as destroying evidence. Therefore, detection and localization of imageinpainting operations are essential. Recent research shows that high-pass filteringfull convolutional network (HPFCN) is applied to image inpainting detection andachieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, weintroduce the squeezed excitation blocks (SE) and propose a high-pass filter attention full convolutional network (HPACN). In feature extraction, we apply concurrent spatial and channel attention (scSE) to enhance feature extraction and obtainmore information. Channel attention (cSE) is introduced in upsampling toenhance detection and localization. The experimental results show that the proposed method can achieve improvement on ImageNet.展开更多
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o...Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.展开更多
In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestri...In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestrian re-identification tasks,a person re-identification method combining spatial feature learning and multi-granularity feature fusion was proposed.First,an attention spatial transformation network(A-STN)is proposed to learn spatial features and solve the problem of misalignment of pedestrian spatial features.Then the network was divided into a global branch,a local coarse-grained fusion branch,and a local fine-grained fusion branch to extract pedestrian global features,coarse-grained fusion features,and fine-grained fusion features,respectively.Among them,the global branch enriches the global features by fusing different pooling features.The local coarse-grained fusion branch uses an overlay pooling to enhance each local feature while learning the correlation relationship between multi-granularity features.The local fine-grained fusion branch uses a differential pooling to obtain the differential features that were fused with global features to learn the relationship between pedestrian local features and pedestrian global features.Finally,the proposed method was compared on three public datasets:Market1501,DukeMTMC-ReID and CUHK03.The experimental results were better than those of the comparative methods,which verifies the effectiveness of the proposed method.展开更多
This study incorporates both positive and negative tourism network attention into a comprehensive framework to examine their distinct effects on tourism development in the Yangtze River Delta(YRD).In particular,this s...This study incorporates both positive and negative tourism network attention into a comprehensive framework to examine their distinct effects on tourism development in the Yangtze River Delta(YRD).In particular,this study uses a spatial econometric model to accurately examine the relationship between positive and negative tourism network attention and regional tourism development,including the impact of tourism network attention on local and neighboring areas.In addition,the framework also uses fuzzy set qualitative comparative analysis(fsQCA)to explore the path combination of network attention and other factors that affect varied stages of tourism development in each city of the YRD,and expounds its driving mechanism.Research findings reveal:(1)Positive tourism network attention has a“U-shaped”influence on regional tourism development.(2)Positive tourism network attention significantly promotes tourism development of both local and neighboring areas,while negative tourism network attention both hinders local tourism development and adversely affects neighboring areas via spillover effects.(3)Multiple paths for tourism development exist in the region,including four modes:Demand-facility driven,demand-resource-facility-transportation driven,word of mouth-transportation driven,and traffic-resource driven.Using the YRD as a case study,this research offers empirical evidence and theoretical insights into how positive and negative tourism network attention influence tourism development in the region.展开更多
Recent advances in spatially resolved transcriptomics(SRT)have provided new opportunities for characterizing spatial structures of various tissues.Graph-based geometric deep learning has gained widespread adoption for...Recent advances in spatially resolved transcriptomics(SRT)have provided new opportunities for characterizing spatial structures of various tissues.Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks.Currently,most methods define adjacency relation between cells or spots by their spatial distance in SRT data,which overlooks key biological interactions like gene expression similarities,and leads to inaccuracies in spatial domain identification.To tackle this challenge,we propose a novel method,SpaGRA(https://github.com/sunxue-yy/SpaGRA),for automatic multi-relationship construction based on graph augmentation.SpaGRA uses spatial distance as prior knowledge and dynamically adjusts edge weights with multi-head graph attention networks(GATs).This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning.Additionally,SpaGRA uses these multi-view relationships to construct negative samples,addressing sampling bias posed by random selection.Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols.Using SpaGRA,we analyze the functional regions in the mouse hypothalamus,identify key genes related to heart development in mouse embryos,and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data.Overall,SpaGRA can effectively characterize spatial structures across diverse SRT datasets.展开更多
基金supported by the National Natural Science Foundation of China(No.62103298)。
文摘Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance.
基金supported by National Natural Science Foundation of China(62473341)Key Research and Development Special Project of Henan Province(221111210500)Key Research and Development Special Project of Henan Province(242102211071,242102210142,232102211053).
文摘The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic,highlighting the growing importance of network security.Intrusion Detection Systems(IDS)are essential for safeguarding network integrity.To address the low accuracy of existing intrusion detection models in identifying network attacks,this paper proposes an intrusion detection method based on the fusion of Spatial Attention mechanism and Residual Neural Network(SA-ResNet).Utilizing residual connections can effectively capture local features in the data;by introducing a spatial attention mechanism,the global dependency relationships of intrusion features can be extracted,enhancing the intrusion recognition model’s focus on the global features of intrusions,and effectively improving the accuracy of intrusion recognition.The proposed model in this paper was experimentally verified on theNSL-KDD dataset.The experimental results showthat the intrusion recognition accuracy of the intrusion detection method based on SA-ResNet has reached 99.86%,and its overall accuracy is 0.41% higher than that of traditional Convolutional Neural Network(CNN)models.
基金Shenzhen Institute of Artificial Intelligence and Robotics for Society,Grant/Award Number:AC01202201003-02GuangDong Basic and Applied Basic Research Foundation,Grant/Award Number:2024A1515010252Longgang District Shenzhen's“Ten Action Plan”for Supporting Innovation Projects,Grant/Award Number:LGKCSDPT2024002。
文摘Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals.
文摘Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.
基金supported by the Henan Provincial Science and Technology Research Project under Grants 232102211006,232102210044,232102211017,232102210055 and 222102210214the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205+1 种基金the Undergraduate Universities Smart Teaching Special Research Project of Henan Province under Grant Jiao Gao[2021]No.489-29the Doctor Natural Science Foundation of Zhengzhou University of Light Industry under Grants 2021BSJJ025 and 2022BSJJZK13.
文摘Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was experimentally validated on the publicly available KAIST dataset and compared with other existing methods. The experimental results demonstrate that our approach achieves favorable performance in various complex environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this paper.
基金supported by National Natural Science Foundation of China(62003028).X.L.was supported by a Scholarship from the China Scholarship Council.
文摘Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and complementary information simultaneously,including gene expression profiles,spatial locations,and histology images.However,most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images.To fully leverage the multi-modal information,we propose a SPAtially embedded Deep Attentional graph Clustering(SpaDAC)method to identify spatial domains while reconstructing denoised gene expression profiles.This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives.Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets.SpaDAC is a valuable tool for spatial domain detection,facilitating the comprehension of tissue architecture and cellular microenvironment.The source code of SpaDAC is freely available at Github(https://github.com/huoyuying/SpaDAC.git).
基金The work was supported by the National Key R&D Program of China(Grant No.2020YFC1511601)Fundamental Research Funds for the Central Universities(Grant No.2019SHFWLC01).
文摘Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches.
基金supported by the National Natural Science Foundation of China under Grant 62172059,61972057 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2020JJ4626+1 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant 19B004Postgraduate Scientific Research Innovation Project of Hunan Province under Grant CX20210811.
文摘Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious operations,such as destroying evidence. Therefore, detection and localization of imageinpainting operations are essential. Recent research shows that high-pass filteringfull convolutional network (HPFCN) is applied to image inpainting detection andachieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, weintroduce the squeezed excitation blocks (SE) and propose a high-pass filter attention full convolutional network (HPACN). In feature extraction, we apply concurrent spatial and channel attention (scSE) to enhance feature extraction and obtainmore information. Channel attention (cSE) is introduced in upsampling toenhance detection and localization. The experimental results show that the proposed method can achieve improvement on ImageNet.
基金Supported by the National Natural Science Foundation of China(No.61901183)Fundamental Research Funds for the Central Universities(No.ZQN921)+4 种基金Natural Science Foundation of Fujian Province Science and Technology Department(No.2021H6037)Key Project of Quanzhou Science and Technology Plan(No.2021C008R)Natural Science Foundation of Fujian Province(No.2019J01010561)Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province 2019(No.JAT191080)Science and Technology Bureau of Quanzhou(No.2017G046)。
文摘Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.
基金the Foshan Science and technology Innovation Team Project(No.FS0AA-KJ919-4402-0060)the National Natural Science Foundation of China(No.62263018)。
文摘In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestrian re-identification tasks,a person re-identification method combining spatial feature learning and multi-granularity feature fusion was proposed.First,an attention spatial transformation network(A-STN)is proposed to learn spatial features and solve the problem of misalignment of pedestrian spatial features.Then the network was divided into a global branch,a local coarse-grained fusion branch,and a local fine-grained fusion branch to extract pedestrian global features,coarse-grained fusion features,and fine-grained fusion features,respectively.Among them,the global branch enriches the global features by fusing different pooling features.The local coarse-grained fusion branch uses an overlay pooling to enhance each local feature while learning the correlation relationship between multi-granularity features.The local fine-grained fusion branch uses a differential pooling to obtain the differential features that were fused with global features to learn the relationship between pedestrian local features and pedestrian global features.Finally,the proposed method was compared on three public datasets:Market1501,DukeMTMC-ReID and CUHK03.The experimental results were better than those of the comparative methods,which verifies the effectiveness of the proposed method.
基金The National Social Science Foundation of China(21BTY064)The Basic Scientific Research Project of Colleges and Universities of Liaoning Province Education Department(LJ122410176001,LJ132410166036)。
文摘This study incorporates both positive and negative tourism network attention into a comprehensive framework to examine their distinct effects on tourism development in the Yangtze River Delta(YRD).In particular,this study uses a spatial econometric model to accurately examine the relationship between positive and negative tourism network attention and regional tourism development,including the impact of tourism network attention on local and neighboring areas.In addition,the framework also uses fuzzy set qualitative comparative analysis(fsQCA)to explore the path combination of network attention and other factors that affect varied stages of tourism development in each city of the YRD,and expounds its driving mechanism.Research findings reveal:(1)Positive tourism network attention has a“U-shaped”influence on regional tourism development.(2)Positive tourism network attention significantly promotes tourism development of both local and neighboring areas,while negative tourism network attention both hinders local tourism development and adversely affects neighboring areas via spillover effects.(3)Multiple paths for tourism development exist in the region,including four modes:Demand-facility driven,demand-resource-facility-transportation driven,word of mouth-transportation driven,and traffic-resource driven.Using the YRD as a case study,this research offers empirical evidence and theoretical insights into how positive and negative tourism network attention influence tourism development in the region.
基金supported by the National Natural Science Foundation of China(Nos.62303271,U1806202,62103397)the Natural Science Foundation of Shandong Province(ZR2023QF081)Funding for open access charge:the National Natural Science Foundation of China(Nos.62303271,U1806202).
文摘Recent advances in spatially resolved transcriptomics(SRT)have provided new opportunities for characterizing spatial structures of various tissues.Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks.Currently,most methods define adjacency relation between cells or spots by their spatial distance in SRT data,which overlooks key biological interactions like gene expression similarities,and leads to inaccuracies in spatial domain identification.To tackle this challenge,we propose a novel method,SpaGRA(https://github.com/sunxue-yy/SpaGRA),for automatic multi-relationship construction based on graph augmentation.SpaGRA uses spatial distance as prior knowledge and dynamically adjusts edge weights with multi-head graph attention networks(GATs).This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning.Additionally,SpaGRA uses these multi-view relationships to construct negative samples,addressing sampling bias posed by random selection.Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols.Using SpaGRA,we analyze the functional regions in the mouse hypothalamus,identify key genes related to heart development in mouse embryos,and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data.Overall,SpaGRA can effectively characterize spatial structures across diverse SRT datasets.