Wave-particle duality as a fundamental tenet of quantum mechanics is crucial for advancing comprehension of quantum theories and developing quantum technologies with practical applications.However,taking into account ...Wave-particle duality as a fundamental tenet of quantum mechanics is crucial for advancing comprehension of quantum theories and developing quantum technologies with practical applications.However,taking into account experimental impact factors to develop a feasible measurement for wave-like and particle-like properties of light fields is an ongoing challenge,and the non-classicality extraction and determination remains to be explored.In this work,feasibly measurable second-order photon correlations based on Hanbury Brown-Twiss and Hong-Ou-Mandel interferences are employed to analyze the evolution of wave-particle duality for various input states.The wave-particle dualities of chaotic,coherent and mixed classical states as functions of time delay and coherence time are investigated.The realistic impacts of background noise,detection efficiency,intensity ratio and phase differences on the wave-particle duality of nonclassical(Fock and squeezed coherent)states are unveiled.In noisy backgrounds with low detection efficiencies,efficient enhancement and extraction of non-classicality and a continuous transition from classical to nonclassical region are achieved in single photon state mixed with coherent state by adjusting the phase difference from 0 to π/2.The non-classicality of squeezed coherent state can be induced by the classical wave-like and particle-like properties.The research provides a practical precision measurement of wave-particle duality that is helpful for the improvement of high-resolution quantum imaging and sensing.展开更多
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to...Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.展开更多
We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation...We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exeiton photon is not spectrally distinguishable from the biexciton photon, and either of them can trigger the %tart' in a Hanbury-Brown and Twiss setup. However, if the exciton energy is spectrally distinguishable from the biexciton, the photon statistics will become asymmetric and a cross-bunching lineshape can be obtained. The theoretical calculations based on a model of three-level rate-equation analysis are consistent with the result of g(2)(τ) correlation function measurements.展开更多
Photon Correlation Spectroscopy is used to study the AOT microemulsion with and without NaCl. Collective diffusion coefficient was investigated by Photon Correlation Spectroscopy technique. We have studied effect of c...Photon Correlation Spectroscopy is used to study the AOT microemulsion with and without NaCl. Collective diffusion coefficient was investigated by Photon Correlation Spectroscopy technique. We have studied effect of charge on dynamic of water-in-oil microemulsion (nano-droplet of water to the oil), which stabilized by AOT and dispersed in n-Decane at water/AOT with 6.7 molar ratio. The small angle X-ray scattering technique and hard sphere model were used to study the structural information of AOT microemulsion with and without NaCl. The structural investigation of samples shows a decrease of length scale of cylindrical droplets with increasing of NaCl concentration in AOT microemulsion.展开更多
We study dynamic and structure of nano-droplets of AOT/water/oil microemulsion with different oils at water/AOT molar ratio of 6.7. Photon correlation spectroscopy is used to study collective diffusion coefficient of ...We study dynamic and structure of nano-droplets of AOT/water/oil microemulsion with different oils at water/AOT molar ratio of 6.7. Photon correlation spectroscopy is used to study collective diffusion coefficient of nano-droplets at AOT microemulsion with decane and cyclohexane. The collective diffusion coefficient of nanodroples is increasing with change of oil from decane to cyclohexane. The structure of AOT microemulsion with decane and cyclohexane is founded with SAXS. Our results show, nano-droplets of AOT microemulsion with decane at X = 6.7 have cylindrical structure and AOT microemulsion with cyclohexane at X = 6.7 have spherical structure.展开更多
The x-ray energies and transition rates associated with single and double electron radiative transitions from the double K hole state 2s2p to the 1s2s and 1s^2 configurations of 11 selected He-like ions(10 ≤ Z ≤ 47)...The x-ray energies and transition rates associated with single and double electron radiative transitions from the double K hole state 2s2p to the 1s2s and 1s^2 configurations of 11 selected He-like ions(10 ≤ Z ≤ 47) are calculated using the fully relativistic multi-configuration Dirac–Fock method(MCDF). An appropriate electron correlation model is constructed with the aid of the active space method, which allows the electron correlation effects to be studied efficiently. The contributions of the electron correlation and the Breit interaction to the transition properties are analyzed in detail. It is found that the two-electron one-photon(TEOP) transition is correlation sensitive. The Breit interaction and electron correlation both contribute significantly to the radiative transition properties of the double K hole state of the He-like ions. Good agreement between the present calculation and previous work is achieved. The calculated data will be helpful to future investigations on double K hole decay processes of He-like ions.展开更多
The unconventional photon blockade(UPB)for low-frequency mode is investigated in a three-mode system with double second-order nonlinearity.By analyzing the Hamiltonian of the system,the optimal analytic condition of U...The unconventional photon blockade(UPB)for low-frequency mode is investigated in a three-mode system with double second-order nonlinearity.By analyzing the Hamiltonian of the system,the optimal analytic condition of UPB in low-frequency mode is obtained.The numerical results are calculated by solving the master equation in a truncated Fock space,which agrees well with the analytic conditions.Through the numerical analysis of the system,it is found that the weak driving strength is favorable for the system to realize the UPB effect,and the system is insensitive to the changes of attenuation rate and environmental temperature.The comparison with the two-mode system and another similar threemode system shows that,under similar system parameters,the UPB effect of this double two-order nonlinear system is more obvious.展开更多
We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order co...We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.展开更多
The second-order correlation function of photons is the primary means to quantitatively describe the second-order coherence of a light field.In contrast to the stationary second-order correlation function,the temporal...The second-order correlation function of photons is the primary means to quantitatively describe the second-order coherence of a light field.In contrast to the stationary second-order correlation function,the temporal second-order correlation function can be used to study the second-order coherence of a transient light field.Based on the Monte Carlo algorithm,we carried out theoretical simulation on the temporal second-order correlation function from the perspective of photon statistics.By introducing experimental factors into the simulation,such as intensity jitter of the light field and time resolution of the instruments,the effects of imperfect experimental conditions on the measurement of second-order correlation function have also been elucidated.Our results provide theoretical guidance and analysis methods for experimental measurements on the secondorder coherence of light fields.展开更多
It is shown that such phenomena as quantum correlations (interaction of space-separated quantum entities), the action of magnetic vector potential on quantum entities in the absence of magnetic field, and near-field a...It is shown that such phenomena as quantum correlations (interaction of space-separated quantum entities), the action of magnetic vector potential on quantum entities in the absence of magnetic field, and near-field antenna effect (the existence of superluminally propagating electromagnetic fields) may be explained by action of spin supercurrents. In case of quantum correlations between quantum entities, spin supercurrent emerges between virtual particles pairs (virtual photons) created by those quantum entities. The explanation of magnetic vector potential and near-field antenna effect is based on contemporary principle of quantum mechanics: the physical vacuum is not an empty space but the ground state of the field consisting of quantum harmonic oscillators (QHOs) characterized by zero-point energy. Using the properties of the oscillators and spin supercurrent, it is proved that magnetic vector potential is proportional to the moment causing the orientation of spin of QHO along the direction of magnetic field. The near-field antenna effect is supposed to take place as a result of action of spin supercurrent causing secondary electromagnetic oscillations. In this way, the electromagnetic field may spread at the speed of spin supercurrent. As spin supercurrent is an inertia free process, its speed may be greater than that of light, which does not contradict postulates of special relativity that sets limits to the speed of inertial systems only.展开更多
Based on the Bell theorem, it has been believed that a theoretical computation of the Bell correlation requires explicit use of an entangled state. Such a physical superposition of light waves occurs in the down-conve...Based on the Bell theorem, it has been believed that a theoretical computation of the Bell correlation requires explicit use of an entangled state. Such a physical superposition of light waves occurs in the down-converter sources used in Bell experiments. However, this physical superposition is eliminated by wave propagation to spatially separated detectors. Bell correlations must therefore result from local waves, and the source boundary conditions of their previously entangled state. In the present model, Bell correlations are computed from disentangled separated waves, boundary conditions of nonlinear optics, and properties of single-photon and vacuum states specified by quantum electrodynamics. Transient interference is assumed between photon-excited waves and photon-empty waves based on the possibility of such interference found to be necessary by the designers of Bell-experiment sources. The present model employs local random variables without specifying underlying causality.展开更多
Single-photon detection(SPD)technologies have been applied to underwater optical imaging to overcome the strong attenuation of seawater.However,external photon noise,resulting from the natural light,hinders their furt...Single-photon detection(SPD)technologies have been applied to underwater optical imaging to overcome the strong attenuation of seawater.However,external photon noise,resulting from the natural light,hinders their further applications due to the extreme sensitivity of SPD and a weakly received optical signal.In this work,we performed noise-resistant underwater correlated biphoton imaging(CPI)to partly solve the influence of the external noise,through a home-built super-bunching laser generated by the stochastic nonlinear interaction between a picosecond laser and a photonic crystal fiber.Compared with a coherent laser,the probabilities of generated bundle N-photons(N≥2)of the super-bunching laser have been enhanced by at least one order of magnitude,enabling CPI under weak light intensity.We experimentally demonstrated CPI with reasonable imaging contrast under the noise-to-signal ratio(NSR)up to 10~3,and the noise-resistant performance has been improved by at least two orders of magnitude compared to that of the single-photon imaging technology.We further achieved underwater CPI with good imaging contrast under NSR of 150,in a glass tank with a length of 10 m with Jerlov typeⅢwater(an attenuation coefficient of 0.176 m^(-1)).These results break the limits of underwater imaging through classical coherent lasers and may offer many enhanced imaging applications through our super-bunching laser,such as long-range target tracking and deep-sea optical exploration under noisy environments.展开更多
Wave mixing and the intricate optical interactions therein have traditionally been regarded as hallmarks of nonlinear optics.A quintessential example of wave mixing lies in the nonlocal triple correlation between the ...Wave mixing and the intricate optical interactions therein have traditionally been regarded as hallmarks of nonlinear optics.A quintessential example of wave mixing lies in the nonlocal triple correlation between the pump beam and the generated twin photons via spontaneous parametric down-conversion(SPDC).However,the SPDC process typically requires intense laser pumping and suffers from inherently low conversion efficiencies,necessitating single-photon detection.In this work,we establish that analogous triple correlations can be effectively produced using low-power continuous-wave illumination,achieved through a commercially available spatial light modulator(SLM)in a linear optical configuration.Specifically,we show how to spatially manipulate and customize this triple correlation and further investigate the applicability across diverse domains,including pattern recognition,intelligent nonlocal image processing,and sensitivity-enhanced optical metrology.Our findings establish,to our knowledge,a novel framework for classical,linear emulation of quantum and nonlinear optical information processing paradigms rooted in multi-wave mixing.展开更多
The prevalence of type 2 diabetes mellitus(T2DM)is increasing rapidly worldwide.Because of the limited success of generic interventions,the focus of the disease study has shifted toward personalized strategies,particu...The prevalence of type 2 diabetes mellitus(T2DM)is increasing rapidly worldwide.Because of the limited success of generic interventions,the focus of the disease study has shifted toward personalized strategies,particularly in the early stages of the disease.Traditional Chinese medicine(TCM)is based on a systems view combined with personalized strategies and has improved our knowledge of personalized diagnostics.From a systems biology perspective,the understanding of personalized diagnostics can be improved to yield a biochemical basis for such strategies;for example,metabolomics can be used in combination with other system-based diagnostic methods such as ultra-weak photon emission(UPE).In this study,we investigated the feasibility of using plasma metabolomics obtained from 44 pre-T2DM subjects to stratify the following TCM-based subtypes:Qi-Yin deficiency,Qi-Yin deficiency with dampness,and Qi-Yin deficiency with stagnation.We studied the relationship between plasma metabolomics and UPE with respect to TCM-based subtyping in order to obtain biochemical information for further interpreting disease subtypes.Principal component analysis of plasma metabolites revealed differences among the TCM-based pre-T2DM subtypes.Relatively high levels of lipids(e.g.,cholesterol esters and triglycerides)were important discriminators of two of the three subtypes and may be associated with a higher risk of cardiovascular disease.Plasma metabolomics data indicate that the lipid profile is an essential component captured by UPE with respect to stratifying subtypes of T2DM.The results suggest that metabolic differences exist among different TCM-based subtypes of pre-T2DM,and profiling plasma metabolites can be used to discriminate among these subtypes.Plasma metabolomics thus provides biochemical insights into system-based UPE measurements.展开更多
We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental re...We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal(idler) field g_(s(i))^(2) decreases with the intensity of signal injection. After applying narrow band filter in signal(idler) band, the value of g_(s(i))^(2) decreases from 1.9 ± 0.02(1.9 ± 0.02) to 1.03 ± 0.02(1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose–Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results.Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFA1404201)the National Natural Science Foundation of China(Nos.62175176,62075154,62475185,U23A20380,and 62305241)the Natural Science Foundation of Shanxi Province(Nos.202203021222107 and 202203021222113).
文摘Wave-particle duality as a fundamental tenet of quantum mechanics is crucial for advancing comprehension of quantum theories and developing quantum technologies with practical applications.However,taking into account experimental impact factors to develop a feasible measurement for wave-like and particle-like properties of light fields is an ongoing challenge,and the non-classicality extraction and determination remains to be explored.In this work,feasibly measurable second-order photon correlations based on Hanbury Brown-Twiss and Hong-Ou-Mandel interferences are employed to analyze the evolution of wave-particle duality for various input states.The wave-particle dualities of chaotic,coherent and mixed classical states as functions of time delay and coherence time are investigated.The realistic impacts of background noise,detection efficiency,intensity ratio and phase differences on the wave-particle duality of nonclassical(Fock and squeezed coherent)states are unveiled.In noisy backgrounds with low detection efficiencies,efficient enhancement and extraction of non-classicality and a continuous transition from classical to nonclassical region are achieved in single photon state mixed with coherent state by adjusting the phase difference from 0 to π/2.The non-classicality of squeezed coherent state can be induced by the classical wave-like and particle-like properties.The research provides a practical precision measurement of wave-particle duality that is helpful for the improvement of high-resolution quantum imaging and sensing.
文摘Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11464034
文摘We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exeiton photon is not spectrally distinguishable from the biexciton photon, and either of them can trigger the %tart' in a Hanbury-Brown and Twiss setup. However, if the exciton energy is spectrally distinguishable from the biexciton, the photon statistics will become asymmetric and a cross-bunching lineshape can be obtained. The theoretical calculations based on a model of three-level rate-equation analysis are consistent with the result of g(2)(τ) correlation function measurements.
文摘Photon Correlation Spectroscopy is used to study the AOT microemulsion with and without NaCl. Collective diffusion coefficient was investigated by Photon Correlation Spectroscopy technique. We have studied effect of charge on dynamic of water-in-oil microemulsion (nano-droplet of water to the oil), which stabilized by AOT and dispersed in n-Decane at water/AOT with 6.7 molar ratio. The small angle X-ray scattering technique and hard sphere model were used to study the structural information of AOT microemulsion with and without NaCl. The structural investigation of samples shows a decrease of length scale of cylindrical droplets with increasing of NaCl concentration in AOT microemulsion.
文摘We study dynamic and structure of nano-droplets of AOT/water/oil microemulsion with different oils at water/AOT molar ratio of 6.7. Photon correlation spectroscopy is used to study collective diffusion coefficient of nano-droplets at AOT microemulsion with decane and cyclohexane. The collective diffusion coefficient of nanodroples is increasing with change of oil from decane to cyclohexane. The structure of AOT microemulsion with decane and cyclohexane is founded with SAXS. Our results show, nano-droplets of AOT microemulsion with decane at X = 6.7 have cylindrical structure and AOT microemulsion with cyclohexane at X = 6.7 have spherical structure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1832126 and 11874051)the National Key Research and Development Program of China(Grant No.2017YFA0402300)。
文摘The x-ray energies and transition rates associated with single and double electron radiative transitions from the double K hole state 2s2p to the 1s2s and 1s^2 configurations of 11 selected He-like ions(10 ≤ Z ≤ 47) are calculated using the fully relativistic multi-configuration Dirac–Fock method(MCDF). An appropriate electron correlation model is constructed with the aid of the active space method, which allows the electron correlation effects to be studied efficiently. The contributions of the electron correlation and the Breit interaction to the transition properties are analyzed in detail. It is found that the two-electron one-photon(TEOP) transition is correlation sensitive. The Breit interaction and electron correlation both contribute significantly to the radiative transition properties of the double K hole state of the He-like ions. Good agreement between the present calculation and previous work is achieved. The calculated data will be helpful to future investigations on double K hole decay processes of He-like ions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11647054)the Natural Science Foundation of Jilin Province,China(Grant No.JJKH20181088KJ)。
文摘The unconventional photon blockade(UPB)for low-frequency mode is investigated in a three-mode system with double second-order nonlinearity.By analyzing the Hamiltonian of the system,the optimal analytic condition of UPB in low-frequency mode is obtained.The numerical results are calculated by solving the master equation in a truncated Fock space,which agrees well with the analytic conditions.Through the numerical analysis of the system,it is found that the weak driving strength is favorable for the system to realize the UPB effect,and the system is insensitive to the changes of attenuation rate and environmental temperature.The comparison with the two-mode system and another similar threemode system shows that,under similar system parameters,the UPB effect of this double two-order nonlinear system is more obvious.
基金Project supported by the Union Research Centre of Advanced Spaceflight Technology(Grant No.USCAST2013-05)the National Natural Science Foundation of China(Grant Nos.61170228,61332019,and 61471239)the High-Tech Research and Development Program of China(Grant No.2013AA122901)
文摘We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12474070,12174112,and 12274159)the Natural Science Foundation of Chongqing Province and Shanghai(Grant Nos.2023NSCQ-MSX1489 and 23ZR1419800).
文摘The second-order correlation function of photons is the primary means to quantitatively describe the second-order coherence of a light field.In contrast to the stationary second-order correlation function,the temporal second-order correlation function can be used to study the second-order coherence of a transient light field.Based on the Monte Carlo algorithm,we carried out theoretical simulation on the temporal second-order correlation function from the perspective of photon statistics.By introducing experimental factors into the simulation,such as intensity jitter of the light field and time resolution of the instruments,the effects of imperfect experimental conditions on the measurement of second-order correlation function have also been elucidated.Our results provide theoretical guidance and analysis methods for experimental measurements on the secondorder coherence of light fields.
文摘It is shown that such phenomena as quantum correlations (interaction of space-separated quantum entities), the action of magnetic vector potential on quantum entities in the absence of magnetic field, and near-field antenna effect (the existence of superluminally propagating electromagnetic fields) may be explained by action of spin supercurrents. In case of quantum correlations between quantum entities, spin supercurrent emerges between virtual particles pairs (virtual photons) created by those quantum entities. The explanation of magnetic vector potential and near-field antenna effect is based on contemporary principle of quantum mechanics: the physical vacuum is not an empty space but the ground state of the field consisting of quantum harmonic oscillators (QHOs) characterized by zero-point energy. Using the properties of the oscillators and spin supercurrent, it is proved that magnetic vector potential is proportional to the moment causing the orientation of spin of QHO along the direction of magnetic field. The near-field antenna effect is supposed to take place as a result of action of spin supercurrent causing secondary electromagnetic oscillations. In this way, the electromagnetic field may spread at the speed of spin supercurrent. As spin supercurrent is an inertia free process, its speed may be greater than that of light, which does not contradict postulates of special relativity that sets limits to the speed of inertial systems only.
文摘Based on the Bell theorem, it has been believed that a theoretical computation of the Bell correlation requires explicit use of an entangled state. Such a physical superposition of light waves occurs in the down-converter sources used in Bell experiments. However, this physical superposition is eliminated by wave propagation to spatially separated detectors. Bell correlations must therefore result from local waves, and the source boundary conditions of their previously entangled state. In the present model, Bell correlations are computed from disentangled separated waves, boundary conditions of nonlinear optics, and properties of single-photon and vacuum states specified by quantum electrodynamics. Transient interference is assumed between photon-excited waves and photon-empty waves based on the possibility of such interference found to be necessary by the designers of Bell-experiment sources. The present model employs local random variables without specifying underlying causality.
基金supported by the National Natural Science Foundation of China(Nos.U22A2091,62222509,U23A20380,62127817,and 62205187)the Shanxi Province Science and Technology Innovation Talent Team(No.202204051001014)+2 种基金the Key Research and Development Project of Shanxi Province(No.202102030201007)the Program for Changjiang Scholars and Innovative Research Team(PCSIRT)(No.IRT_17R70)the 111 Projects(No.D18001)。
文摘Single-photon detection(SPD)technologies have been applied to underwater optical imaging to overcome the strong attenuation of seawater.However,external photon noise,resulting from the natural light,hinders their further applications due to the extreme sensitivity of SPD and a weakly received optical signal.In this work,we performed noise-resistant underwater correlated biphoton imaging(CPI)to partly solve the influence of the external noise,through a home-built super-bunching laser generated by the stochastic nonlinear interaction between a picosecond laser and a photonic crystal fiber.Compared with a coherent laser,the probabilities of generated bundle N-photons(N≥2)of the super-bunching laser have been enhanced by at least one order of magnitude,enabling CPI under weak light intensity.We experimentally demonstrated CPI with reasonable imaging contrast under the noise-to-signal ratio(NSR)up to 10~3,and the noise-resistant performance has been improved by at least two orders of magnitude compared to that of the single-photon imaging technology.We further achieved underwater CPI with good imaging contrast under NSR of 150,in a glass tank with a length of 10 m with Jerlov typeⅢwater(an attenuation coefficient of 0.176 m^(-1)).These results break the limits of underwater imaging through classical coherent lasers and may offer many enhanced imaging applications through our super-bunching laser,such as long-range target tracking and deep-sea optical exploration under noisy environments.
基金National Natural Science Foundation of China(12274037,11735005,11654003,61675028)Science and Technology Development Fund from Macao SAR(FDCT)(0105/2023/RIA2)Interdiscipline Research Funds of Beijing Normal University。
文摘Wave mixing and the intricate optical interactions therein have traditionally been regarded as hallmarks of nonlinear optics.A quintessential example of wave mixing lies in the nonlocal triple correlation between the pump beam and the generated twin photons via spontaneous parametric down-conversion(SPDC).However,the SPDC process typically requires intense laser pumping and suffers from inherently low conversion efficiencies,necessitating single-photon detection.In this work,we establish that analogous triple correlations can be effectively produced using low-power continuous-wave illumination,achieved through a commercially available spatial light modulator(SLM)in a linear optical configuration.Specifically,we show how to spatially manipulate and customize this triple correlation and further investigate the applicability across diverse domains,including pattern recognition,intelligent nonlocal image processing,and sensitivity-enhanced optical metrology.Our findings establish,to our knowledge,a novel framework for classical,linear emulation of quantum and nonlinear optical information processing paradigms rooted in multi-wave mixing.
文摘The prevalence of type 2 diabetes mellitus(T2DM)is increasing rapidly worldwide.Because of the limited success of generic interventions,the focus of the disease study has shifted toward personalized strategies,particularly in the early stages of the disease.Traditional Chinese medicine(TCM)is based on a systems view combined with personalized strategies and has improved our knowledge of personalized diagnostics.From a systems biology perspective,the understanding of personalized diagnostics can be improved to yield a biochemical basis for such strategies;for example,metabolomics can be used in combination with other system-based diagnostic methods such as ultra-weak photon emission(UPE).In this study,we investigated the feasibility of using plasma metabolomics obtained from 44 pre-T2DM subjects to stratify the following TCM-based subtypes:Qi-Yin deficiency,Qi-Yin deficiency with dampness,and Qi-Yin deficiency with stagnation.We studied the relationship between plasma metabolomics and UPE with respect to TCM-based subtyping in order to obtain biochemical information for further interpreting disease subtypes.Principal component analysis of plasma metabolites revealed differences among the TCM-based pre-T2DM subtypes.Relatively high levels of lipids(e.g.,cholesterol esters and triglycerides)were important discriminators of two of the three subtypes and may be associated with a higher risk of cardiovascular disease.Plasma metabolomics data indicate that the lipid profile is an essential component captured by UPE with respect to stratifying subtypes of T2DM.The results suggest that metabolic differences exist among different TCM-based subtypes of pre-T2DM,and profiling plasma metabolites can be used to discriminate among these subtypes.Plasma metabolomics thus provides biochemical insights into system-based UPE measurements.
基金Project supported by the National Natural Science Foundation of China(Grant No.11527808)the State Key Development Program for Basic Research of China(Grant No.2014CB340103)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120032110055)the Natural Science Foundation of Tianjin,China(Grant No.14JCQNJC02300)the Program for Changjiang Scholars and Innovative Research Team in University,Chinathe Program of Introducing Talents of Discipline to Universities,China(Grant No.B07014)
文摘We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal(idler) field g_(s(i))^(2) decreases with the intensity of signal injection. After applying narrow band filter in signal(idler) band, the value of g_(s(i))^(2) decreases from 1.9 ± 0.02(1.9 ± 0.02) to 1.03 ± 0.02(1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose–Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results.Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network.