Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de...Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.展开更多
This paper reviews the latest advancements in artificial intelligence-assisted R&D project initiation,aiming to provide intelligent solutions for R&D management.It thoroughly examines the value of artificial i...This paper reviews the latest advancements in artificial intelligence-assisted R&D project initiation,aiming to provide intelligent solutions for R&D management.It thoroughly examines the value of artificial intelligence technologies in four core areas:intelligent requirement analysis,technical feasibility assessment,market prospect forecasting,and automated risk identification.Furthermore,it proposes three forward-looking trends—enhanced intelligence,the establishment of industry standards,and deeper human-machine collaboration.These insights are expected to improve project approval success rates and shorten initiation timelines,driving a paradigm shift in R&D management from experience-based to data-driven decision-making.The review highlights how artificial intelligence,through machine learning,natural language processing,and data mining,effectively addresses chronic challenges in traditional initiation processes such as inefficiency,delayed decisions,and resource misallocation.It also identifies critical hurdles,including data quality,model interpretability,and organizational transformation,offering a vital reference framework for the future of intelligent R&D development.展开更多
Back-arc basins are key sites for oceanic lithosphere formation and consumption at convergent plate boundaries,and their formation and subduction processes can be highly variable.The tectonic setting and evolution of ...Back-arc basins are key sites for oceanic lithosphere formation and consumption at convergent plate boundaries,and their formation and subduction processes can be highly variable.The tectonic setting and evolution of the Meso-Tethys Shiquanhe-Jiali ophiolite sub-belt(SJO sub-belt)within BangongNujiang Suture Zone(BNSZ),central xizang,are disputed for the complex rock composition and ages.In this paper,we present geochronology,geochemistry and field observations on the Shiquanhe ophiolite,providing a representative ophiolite example in the western end of SJO.Based on investigation of the petrogenesis and tectonic setting of different rock types,combined with the U-Pb dating,we propose a twostage subduction model for explaining the tectonic evolution of SJO as well as the wither away of a backarc basin.Geochemical and geochronological data indicate that the ca.183 Ma LAN(north of Lameila)gabbros formed in the forearc setting and represent the early-stage subduction of the Bangong MesoTethys.This subduction induced the back-arc spreading recorded in the ca.170 Ma gabbros and lower pillow basalts of PL-SDN(Pagelizanong-Shiquanhe Dam Nan)ophiolitic fragments in the Shiquanhe ophiolite.The basaltic lavas overlying the lower basalts,represented by the ca.168–164 Ma diabasic and boninite dikes have forearc characteristics,and they represent the back-arc basin subduction initiation at a late stage.This work thus recovered the multiple tectonic evolution of SJO sub-belt and emphasise the importance of the back-arc basin subduction in the evolution of ancient oceans.展开更多
The conventional view suggests that the subduction of the South China Sea plate beneath Luzon occurred due to the oceanic lithosphere’s high density,facilitating subduction initiation.However,before the South China S...The conventional view suggests that the subduction of the South China Sea plate beneath Luzon occurred due to the oceanic lithosphere’s high density,facilitating subduction initiation.However,before the South China Sea opened,a continental margin likely existed,meaning that Luzon was directly adjacent to the continental margin rather than the oceanic basin.This would make subduction initiation more challenging.Here,we propose a new model suggesting that during the formation of the South China Sea,extensive mafic magmatic underplating occurred along its continental margin.The high-density magmatic additions may have increased the overall density of the continental margin,potentially exceeding that of Luzon,thereby enabling subduction to proceed.展开更多
In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Usin...In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Using the perturbation method,we analyze the first-and second-order sideband generations in the output field from the system under the actions of a strong control field and a weak probe field.Numerical simulations show that the Kerr nonlinearity can lead to the occurrence of the asymmetric line shape in the transmission of the probe field.Comparing with traditional scheme for generating the second-order sideband,our spectral shape of the second-order sideband is amplified and becomes asymmetric,which has potential applications in precision measurement,high-sensitivity devices,and frequency conversion.展开更多
Crack initiation mechanism of dwell fatigue has always been a key problem in rationalizing the dwell effect,and it is not completely understood yet.This study conducted stress-controlled low-cycle fatigue and dwell fa...Crack initiation mechanism of dwell fatigue has always been a key problem in rationalizing the dwell effect,and it is not completely understood yet.This study conducted stress-controlled low-cycle fatigue and dwell fatigue tests on Ti-6Al-3Nb-2Zr-1Mo alloy with bimodal microstructure to reveal its microstructural characteristics and crack initiation mechanisms.The study demonstrated that the faceted primaryα nodules located near the specimen surface acted as crack initiation sites during both fatigue and dwell fatigue tests.Slip trace analysis revealed that faceted cracking occurred at(0001)basal plane with the maximum Schmid factor value through a special cracking mode referred to as(0001)twist boundary cracking.Innovative criteria of parameters C1 and C2 were proposed based on experimental observation and molecular dynamics simulations,which well identify candidates for(0001)twist boundary crack nucleation.It demonstrated that grain pairs combining a moderately high Schmid factor for basal slip and a well-orientated Burgers vector in the out-of-surface plane was the preferable location for surface(0001)twist-boundary crack initiation,and grain pairs combining a high Schmid factor for basal slip and a high normal stress on basal plane are perfect candidates for subsurface cracking.Based on this,phenomeno-logical models are proposed to explain the surface(0001)twist-boundary cracking mechanism from the perspective of surface extrusion-intrusion-induced micro-notches.展开更多
Subduction initiation is a critical part of the plate tectonic system,but its geodynamic process is still poorly understood due to the lack of well-preserved geological records.Based on new zircon U–Pb–Hf isotopic a...Subduction initiation is a critical part of the plate tectonic system,but its geodynamic process is still poorly understood due to the lack of well-preserved geological records.Based on new zircon U–Pb–Hf isotopic and whole-rock geochemical data,we report the first discovery of a latest Cambrian–Early Ordovician forearc-arc rock sequence in the Eastern Alps.This sequence includes granitic gneisses,amphibolites,and amphibole plagiogneisses from the ophiolitic Speik Complex and Gleinalpe Complex.These rocks exhibit geochemical affinities with typical oceanic plagiogranites,forearc basalts(FABs),and island arc basalts,respectively.The latest Cambrian plagiogranitic protoliths(491±2 Ma)are shearing-type plagiogranites that were formed in the tectonic setting of forearc spreading.The latest Cambrian FABs(496–489 Ma)have similar geochemical compositions and positiveεHf(t)values(+2.5 to+14.9)to the depleted mid-ocean ridge basalts.However,they show depletion in high field strength elements(HFSEs;e.g.,Nb,Ta,and Zr)and have relatively low Ti/V ratios.These features suggest that they were derived from a depleted mantle source modified by subducting slab-released components in a forearc environment.The Early Ordovician basaltic protoliths(476–472 Ma)of amphibole plagiogneisses show enrichment in large ion lithophile elements and depletion in HFSEs(e.g.Nb,Ta,Zr,and Hf),implying a mature island arc environment.These metaigneous rocks,along with the coeval boninite-like high-Mg amphibolites near the study area,form a typical rock sequence resembling that of the Izu–Bonin–Mariana(IBM)arc system.The Speik and Gleinalpe complexes document a complete magmatic evolution from subduction initiation to mature arc development within the West Proto-Tethys Ocean.Integrating our new data with published work,we reconstruct the late Ediacaran–early Paleozoic tectonic evolution of the northern Gondwana.During the late Ediacaran–early Cambrian,the rollback of the West Proto-Tethys oceanic plate triggered the separation of the Wechsel-Silvretta-Gleinalpe continental arc from the northern Gondwana.This process led to the formation of the Speik back-arc oceanic basin,a southwestern branch of the West Proto-Tethys Ocean.In the latest Cambrian–Early Ordovician,subduction initiation occurred in the Speik Ocean,which subsequently developed into an intra-oceanic arc system.During the Early Devonian,the Speik Ocean closed and the Wechsel-Silvretta-Gleinalpe continental arc reattached to the Gondwana,as evidenced by the metamorphic event at ca.400 Ma.展开更多
The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditi...The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs.展开更多
Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can...Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can respond immediately to the threat.Therefore,when an animal detects a threat through its visual system,it must quickly direct its gaze and attention toward the source of danger,assess the threat level,and take appropriate action.展开更多
Hydrogen has emerged as a promising clean energy source,leading to numerous recent efforts to integrate hydrogen into turbine engine applications[1].This integration has the potential to significantly enhance engine e...Hydrogen has emerged as a promising clean energy source,leading to numerous recent efforts to integrate hydrogen into turbine engine applications[1].This integration has the potential to significantly enhance engine efficiency while reducing carbon dioxide emissions[2].However,the degradation of nickel alloys induced by hydrogen has been well documented[3-7].Consequently,hydrogen-assisted failure of nickel alloys poses a critical concern for the design and safe operation of hydrogen-powered turbine engines.展开更多
To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre...To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.展开更多
Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock ...Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock pressure influence fracture initiation,based on mass conservation,elasticity,and water-ice phase transition principles.A model for rock fracture initiation considering freezing temperature,uneven freezing expansion,in-situ stress,and lateral pressure was proposed based on fracture mechanics.Equations for stress intensity factors were developed and validated using the phase field method.The effects of rock elastic modulus anisotropy and critical fracture energy density on fracture initiation were also discussed.The results show that the values of KI and KII exhibit an upward trend as the freezing temperature,uneven expansion,in-situ stress,and lateral pressure increase.The uneven freezing expansion has the most significant influence on KI and KII values among these parameters.As the uneven freezing expansion coefficient increases to 0.5,the fracture initiation mode shifts from tensile fracture to shear fracture.As the lateral pressure coefficient increases to 1,the fracture initiation mode shifts from tensile fracture to shear fracture.Rock elastic modulus anisotropy causes fractures to propagate in a clockwise direction,forming a'butterfly'pattern.Critical fracture energy density an isotropy causes counterclockwise deviation in propagation direction,resulting in branching paths and an'H'-shaped pattern.展开更多
Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresea...Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years.展开更多
Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both t...Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both the polarization state of the fundamental and harmonic beams,thereby affecting the accuracy of the obtained second-order nonlinear susceptibility.Here,we propose a data correction method to solve this problem to obtain accurate secondorder nonlinear susceptibility.The feasibility and generality of the method are demonstrated through theoretical and experimental validation.展开更多
We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the ...We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the Kerr effect increases,the absorption curve exhibits an asymmetric-symmetric-asymmetric transition,and the zero absorption point shifts with the increase of the Kerr effect.Furthermore,by changing the strength of the Kerr effect,we can control the width of the transparent window,and the position of the zero-absorption point and meanwhile change the left and right width of the absorption peak.The asymmetry absorption curve can be employed to improve the quality factor of the cavity when the frequency detuning is tuned to be around the right peak.The simple dependence of the zeroabsorption point on the strength of Kerr effect suggests that the strength of Kerr effect can be measured by measuring the position of the zero-absorption point in a possible application.展开更多
Introduction: Actors of psychoactive drug initiation refer to those who introduce others to psychoactive drug use (initiators) and those who are introduced to psychoactive drugs (users). By identifying their features,...Introduction: Actors of psychoactive drug initiation refer to those who introduce others to psychoactive drug use (initiators) and those who are introduced to psychoactive drugs (users). By identifying their features, better prevention and intervention programs can be developed to reduce psychoactive drug use among adolescents. This article describes the role of actors of psychoactive drug initiation among teenagers in secondary schools in Yaoundé (Cameroon). Methodology: A cross sectional study was carried out in twelve secondary schools in Yaoundé from October 2022 to May 2023. Adolescents from Form four to upper sixth, who assented to participate in the study and received parental consent were included. Data were collected in a structured self-reported questionnaire and analyzed using SPSS 23. Quantitative variables were expressed using means, standard deviations, median and interquartile ranges depending on the distribution of data. Qualitative variables were expressed in the form of frequency and percentages. Results: Drug use was more prevalent among male adolescents (55.3%) from nuclear families (91.4%) who received relatively high pocket money. The main sources of drug exposure were non-family members (49.7%), especially friends outside school. The most frequent place of initiation was snack bars (33.1%). Conclusion: The study revealed the importance of the family, friends and leisure places in the initiation process of drug use in teenagers. Based on these results, parents and school authorities should work together to create a safe and supportive environment that fosters communication, education to prevent drug abuse among adolescents in Yaoundé.展开更多
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress...To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.展开更多
A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influen...A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influence of flow drag force on slope stability;(2)back-analyze the movement process of debris flow.First,the geological background and movement of this debris flow were described based on a field investigation.Then,drag force,calculated by the laminar flow theory,is added to the slope stability calculation model,which elaborates the initiation process of this disaster.Moreover,dynamic simulation software(DAN3D)was used to simulate the kinematic process of the debris flow with a variety of combination models.The study shows that the terrace area can quickly produce surface runoff and create a drag force under rainfall conditions,which is the essential reason for the initiation of debris flow.In addition,the use of the FVV(Frictional-Voellmy-Voellmy)model is found to provide the best performance in simulating this type of debris flow,which reveals that it lasts approximately 200 s and that the maximum velocity is 12 m/s.展开更多
Low-cycle fatigue crack initiation behavior of nickel-based single crystal superalloy at 530℃ was investigated.Results show that the behavior of crack initiation is closely related to the maximum strain.When the maxi...Low-cycle fatigue crack initiation behavior of nickel-based single crystal superalloy at 530℃ was investigated.Results show that the behavior of crack initiation is closely related to the maximum strain.When the maximum strain is 2.0%,the fatigue crack is originated at the position of persistent slip bands on the surface of specimen,which is located on the{111}slip plane.No defects are observed at the crack initiation position.When the maximum strain is lower than 1.6%,the cracks are initiated at the casting defects on sub-surface or at interior of the specimen.The casting defects are located on the{100}slip plane vertical to the axial force.The crack is initiated along the{100}slip plane and then expanded along different{111}slip planes after a short stage of expansion.As the maximum strain decreases,the position of crack initiation gradually changes from the surface to the interior.Moreover,the secondary cracks extending inward along the fracture surface appear in the crack initiation area,and there is obvious stress concentration near the secondary cracks.The dislocation density is high near the fracture surface in the crack initiation zone,where a lot of dislocations cutting into the γ'phase exist.An oxide layer of 50‒100 nm is presented on the fracture surface,and Ni,Al,Cr and Co elements are mainly segregated into the oxide layer of the surface.展开更多
In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.T...In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.展开更多
基金supported by the National Natural Science Foundation of China under Grants 62476138 and 42375016.
文摘Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.
文摘This paper reviews the latest advancements in artificial intelligence-assisted R&D project initiation,aiming to provide intelligent solutions for R&D management.It thoroughly examines the value of artificial intelligence technologies in four core areas:intelligent requirement analysis,technical feasibility assessment,market prospect forecasting,and automated risk identification.Furthermore,it proposes three forward-looking trends—enhanced intelligence,the establishment of industry standards,and deeper human-machine collaboration.These insights are expected to improve project approval success rates and shorten initiation timelines,driving a paradigm shift in R&D management from experience-based to data-driven decision-making.The review highlights how artificial intelligence,through machine learning,natural language processing,and data mining,effectively addresses chronic challenges in traditional initiation processes such as inefficiency,delayed decisions,and resource misallocation.It also identifies critical hurdles,including data quality,model interpretability,and organizational transformation,offering a vital reference framework for the future of intelligent R&D development.
基金supported by the Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2024A1515010439,2025A1515010724)National Nature Science Foundation of China(Grant Nos.41972049,41472054,42072229,41977231)+4 种基金Young Innovative Talent Project of Department of Education of Guangdong Province(Natural ScienceGrant No.2022KQNCX184)Natural Research Project of Guangdong Polytechnic of Industry&Commerce(Grant No.2022-ZKT-01)China State Scholarship Fund of visiting scholar(Grant No.20170638507)High-level Talent Special Support Program of Guangdong Polytechnic of Industry&Commerce(Grant No.2023-gc-03).
文摘Back-arc basins are key sites for oceanic lithosphere formation and consumption at convergent plate boundaries,and their formation and subduction processes can be highly variable.The tectonic setting and evolution of the Meso-Tethys Shiquanhe-Jiali ophiolite sub-belt(SJO sub-belt)within BangongNujiang Suture Zone(BNSZ),central xizang,are disputed for the complex rock composition and ages.In this paper,we present geochronology,geochemistry and field observations on the Shiquanhe ophiolite,providing a representative ophiolite example in the western end of SJO.Based on investigation of the petrogenesis and tectonic setting of different rock types,combined with the U-Pb dating,we propose a twostage subduction model for explaining the tectonic evolution of SJO as well as the wither away of a backarc basin.Geochemical and geochronological data indicate that the ca.183 Ma LAN(north of Lameila)gabbros formed in the forearc setting and represent the early-stage subduction of the Bangong MesoTethys.This subduction induced the back-arc spreading recorded in the ca.170 Ma gabbros and lower pillow basalts of PL-SDN(Pagelizanong-Shiquanhe Dam Nan)ophiolitic fragments in the Shiquanhe ophiolite.The basaltic lavas overlying the lower basalts,represented by the ca.168–164 Ma diabasic and boninite dikes have forearc characteristics,and they represent the back-arc basin subduction initiation at a late stage.This work thus recovered the multiple tectonic evolution of SJO sub-belt and emphasise the importance of the back-arc basin subduction in the evolution of ancient oceans.
基金support from the National Natural Science Foundation of China (Grant No. 42276049)。
文摘The conventional view suggests that the subduction of the South China Sea plate beneath Luzon occurred due to the oceanic lithosphere’s high density,facilitating subduction initiation.However,before the South China Sea opened,a continental margin likely existed,meaning that Luzon was directly adjacent to the continental margin rather than the oceanic basin.This would make subduction initiation more challenging.Here,we propose a new model suggesting that during the formation of the South China Sea,extensive mafic magmatic underplating occurred along its continental margin.The high-density magmatic additions may have increased the overall density of the continental margin,potentially exceeding that of Luzon,thereby enabling subduction to proceed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174344 and 12175199)Foundation of Department of Science and Technology of Zhejiang Province(Grant No.2022R52047)。
文摘In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Using the perturbation method,we analyze the first-and second-order sideband generations in the output field from the system under the actions of a strong control field and a weak probe field.Numerical simulations show that the Kerr nonlinearity can lead to the occurrence of the asymmetric line shape in the transmission of the probe field.Comparing with traditional scheme for generating the second-order sideband,our spectral shape of the second-order sideband is amplified and becomes asymmetric,which has potential applications in precision measurement,high-sensitivity devices,and frequency conversion.
基金supported by the National Natural Science Foundation of China(Nos.52074231,52274396 and 52001258)the Chongqing Natural Science Foundation(No.cstc2020jcyj-msxmX1056).
文摘Crack initiation mechanism of dwell fatigue has always been a key problem in rationalizing the dwell effect,and it is not completely understood yet.This study conducted stress-controlled low-cycle fatigue and dwell fatigue tests on Ti-6Al-3Nb-2Zr-1Mo alloy with bimodal microstructure to reveal its microstructural characteristics and crack initiation mechanisms.The study demonstrated that the faceted primaryα nodules located near the specimen surface acted as crack initiation sites during both fatigue and dwell fatigue tests.Slip trace analysis revealed that faceted cracking occurred at(0001)basal plane with the maximum Schmid factor value through a special cracking mode referred to as(0001)twist boundary cracking.Innovative criteria of parameters C1 and C2 were proposed based on experimental observation and molecular dynamics simulations,which well identify candidates for(0001)twist boundary crack nucleation.It demonstrated that grain pairs combining a moderately high Schmid factor for basal slip and a well-orientated Burgers vector in the out-of-surface plane was the preferable location for surface(0001)twist-boundary crack initiation,and grain pairs combining a high Schmid factor for basal slip and a high normal stress on basal plane are perfect candidates for subsurface cracking.Based on this,phenomeno-logical models are proposed to explain the surface(0001)twist-boundary cracking mechanism from the perspective of surface extrusion-intrusion-induced micro-notches.
基金supported by the National Natural Science Foundation of China(Grant Nos.42272244 and 91755212)Taishan Scholars(Grant No.ts20190918).
文摘Subduction initiation is a critical part of the plate tectonic system,but its geodynamic process is still poorly understood due to the lack of well-preserved geological records.Based on new zircon U–Pb–Hf isotopic and whole-rock geochemical data,we report the first discovery of a latest Cambrian–Early Ordovician forearc-arc rock sequence in the Eastern Alps.This sequence includes granitic gneisses,amphibolites,and amphibole plagiogneisses from the ophiolitic Speik Complex and Gleinalpe Complex.These rocks exhibit geochemical affinities with typical oceanic plagiogranites,forearc basalts(FABs),and island arc basalts,respectively.The latest Cambrian plagiogranitic protoliths(491±2 Ma)are shearing-type plagiogranites that were formed in the tectonic setting of forearc spreading.The latest Cambrian FABs(496–489 Ma)have similar geochemical compositions and positiveεHf(t)values(+2.5 to+14.9)to the depleted mid-ocean ridge basalts.However,they show depletion in high field strength elements(HFSEs;e.g.,Nb,Ta,and Zr)and have relatively low Ti/V ratios.These features suggest that they were derived from a depleted mantle source modified by subducting slab-released components in a forearc environment.The Early Ordovician basaltic protoliths(476–472 Ma)of amphibole plagiogneisses show enrichment in large ion lithophile elements and depletion in HFSEs(e.g.Nb,Ta,Zr,and Hf),implying a mature island arc environment.These metaigneous rocks,along with the coeval boninite-like high-Mg amphibolites near the study area,form a typical rock sequence resembling that of the Izu–Bonin–Mariana(IBM)arc system.The Speik and Gleinalpe complexes document a complete magmatic evolution from subduction initiation to mature arc development within the West Proto-Tethys Ocean.Integrating our new data with published work,we reconstruct the late Ediacaran–early Paleozoic tectonic evolution of the northern Gondwana.During the late Ediacaran–early Cambrian,the rollback of the West Proto-Tethys oceanic plate triggered the separation of the Wechsel-Silvretta-Gleinalpe continental arc from the northern Gondwana.This process led to the formation of the Speik back-arc oceanic basin,a southwestern branch of the West Proto-Tethys Ocean.In the latest Cambrian–Early Ordovician,subduction initiation occurred in the Speik Ocean,which subsequently developed into an intra-oceanic arc system.During the Early Devonian,the Speik Ocean closed and the Wechsel-Silvretta-Gleinalpe continental arc reattached to the Gondwana,as evidenced by the metamorphic event at ca.400 Ma.
基金Projects(52104143,52109135,52374099)supported by the National Natural Science Foundation of ChinaProject(2025YFHZ0323)supported by the Natural Science Foundation of Sichuan Province,China。
文摘The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs.
基金supported by the National Natural Science Foundation of China(32471055 and 82171090)Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)ZJLab,Shanghai Center for Brain Science and Brain-Inspired Technology,the Lingang Laboratory(LG-QS-202203-12).
文摘Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can respond immediately to the threat.Therefore,when an animal detects a threat through its visual system,it must quickly direct its gaze and attention toward the source of danger,assess the threat level,and take appropriate action.
基金supported by the Science Center for Gas Turbine Project(No.P2022-B-IV-009-002).
文摘Hydrogen has emerged as a promising clean energy source,leading to numerous recent efforts to integrate hydrogen into turbine engine applications[1].This integration has the potential to significantly enhance engine efficiency while reducing carbon dioxide emissions[2].However,the degradation of nickel alloys induced by hydrogen has been well documented[3-7].Consequently,hydrogen-assisted failure of nickel alloys poses a critical concern for the design and safe operation of hydrogen-powered turbine engines.
基金supported by the National Natural Science Foundation of China (No.52204085)the Interdisciplinary Research Project for Young Teachers of USTB,Fundamental Research Funds for the Central Universities (No.FRF-IDRY-21-006).
文摘To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.
基金This study was funded by the National Natural Science Foundation of China(No.51978039).
文摘Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock pressure influence fracture initiation,based on mass conservation,elasticity,and water-ice phase transition principles.A model for rock fracture initiation considering freezing temperature,uneven freezing expansion,in-situ stress,and lateral pressure was proposed based on fracture mechanics.Equations for stress intensity factors were developed and validated using the phase field method.The effects of rock elastic modulus anisotropy and critical fracture energy density on fracture initiation were also discussed.The results show that the values of KI and KII exhibit an upward trend as the freezing temperature,uneven expansion,in-situ stress,and lateral pressure increase.The uneven freezing expansion has the most significant influence on KI and KII values among these parameters.As the uneven freezing expansion coefficient increases to 0.5,the fracture initiation mode shifts from tensile fracture to shear fracture.As the lateral pressure coefficient increases to 1,the fracture initiation mode shifts from tensile fracture to shear fracture.Rock elastic modulus anisotropy causes fractures to propagate in a clockwise direction,forming a'butterfly'pattern.Critical fracture energy density an isotropy causes counterclockwise deviation in propagation direction,resulting in branching paths and an'H'-shaped pattern.
基金Projects(52178371,52108355,52178321)supported by the National Natural Science Foundation of ChinaProject(202305)supported by the Research Project of Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,China。
文摘Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years.
基金This work was supported by the National Natural Science Foundation of China(No.U2230203)the Fundamental Research Funds for the Central Universities.
文摘Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both the polarization state of the fundamental and harmonic beams,thereby affecting the accuracy of the obtained second-order nonlinear susceptibility.Here,we propose a data correction method to solve this problem to obtain accurate secondorder nonlinear susceptibility.The feasibility and generality of the method are demonstrated through theoretical and experimental validation.
基金Supported by the Key Scientific Research Plan of Colleges and Universities in Henan Province(23B140006)the National Natural Science Foundation of China(11965017)。
文摘We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the Kerr effect increases,the absorption curve exhibits an asymmetric-symmetric-asymmetric transition,and the zero absorption point shifts with the increase of the Kerr effect.Furthermore,by changing the strength of the Kerr effect,we can control the width of the transparent window,and the position of the zero-absorption point and meanwhile change the left and right width of the absorption peak.The asymmetry absorption curve can be employed to improve the quality factor of the cavity when the frequency detuning is tuned to be around the right peak.The simple dependence of the zeroabsorption point on the strength of Kerr effect suggests that the strength of Kerr effect can be measured by measuring the position of the zero-absorption point in a possible application.
文摘Introduction: Actors of psychoactive drug initiation refer to those who introduce others to psychoactive drug use (initiators) and those who are introduced to psychoactive drugs (users). By identifying their features, better prevention and intervention programs can be developed to reduce psychoactive drug use among adolescents. This article describes the role of actors of psychoactive drug initiation among teenagers in secondary schools in Yaoundé (Cameroon). Methodology: A cross sectional study was carried out in twelve secondary schools in Yaoundé from October 2022 to May 2023. Adolescents from Form four to upper sixth, who assented to participate in the study and received parental consent were included. Data were collected in a structured self-reported questionnaire and analyzed using SPSS 23. Quantitative variables were expressed using means, standard deviations, median and interquartile ranges depending on the distribution of data. Qualitative variables were expressed in the form of frequency and percentages. Results: Drug use was more prevalent among male adolescents (55.3%) from nuclear families (91.4%) who received relatively high pocket money. The main sources of drug exposure were non-family members (49.7%), especially friends outside school. The most frequent place of initiation was snack bars (33.1%). Conclusion: The study revealed the importance of the family, friends and leisure places in the initiation process of drug use in teenagers. Based on these results, parents and school authorities should work together to create a safe and supportive environment that fosters communication, education to prevent drug abuse among adolescents in Yaoundé.
基金The National Key Research and Development Program of China under contract No.2023YFC3107701the National Natural Science Foundation of China under contract No.42375143.
文摘To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
基金supported by the National Natural Science Foundation of China(No.42077277)。
文摘A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influence of flow drag force on slope stability;(2)back-analyze the movement process of debris flow.First,the geological background and movement of this debris flow were described based on a field investigation.Then,drag force,calculated by the laminar flow theory,is added to the slope stability calculation model,which elaborates the initiation process of this disaster.Moreover,dynamic simulation software(DAN3D)was used to simulate the kinematic process of the debris flow with a variety of combination models.The study shows that the terrace area can quickly produce surface runoff and create a drag force under rainfall conditions,which is the essential reason for the initiation of debris flow.In addition,the use of the FVV(Frictional-Voellmy-Voellmy)model is found to provide the best performance in simulating this type of debris flow,which reveals that it lasts approximately 200 s and that the maximum velocity is 12 m/s.
基金National Science and Technology Major Project(J2019-VI-0022-0138)。
文摘Low-cycle fatigue crack initiation behavior of nickel-based single crystal superalloy at 530℃ was investigated.Results show that the behavior of crack initiation is closely related to the maximum strain.When the maximum strain is 2.0%,the fatigue crack is originated at the position of persistent slip bands on the surface of specimen,which is located on the{111}slip plane.No defects are observed at the crack initiation position.When the maximum strain is lower than 1.6%,the cracks are initiated at the casting defects on sub-surface or at interior of the specimen.The casting defects are located on the{100}slip plane vertical to the axial force.The crack is initiated along the{100}slip plane and then expanded along different{111}slip planes after a short stage of expansion.As the maximum strain decreases,the position of crack initiation gradually changes from the surface to the interior.Moreover,the secondary cracks extending inward along the fracture surface appear in the crack initiation area,and there is obvious stress concentration near the secondary cracks.The dislocation density is high near the fracture surface in the crack initiation zone,where a lot of dislocations cutting into the γ'phase exist.An oxide layer of 50‒100 nm is presented on the fracture surface,and Ni,Al,Cr and Co elements are mainly segregated into the oxide layer of the surface.
基金supported by the National Key Research and Development Program of China under Grant 2023YFB2407400。
文摘In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.