Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual informa...Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data d...Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.展开更多
This paper studies the Browder-Tikhonov regularization of a second-order evolution hemivariational inequality (SOEHVI) with non-coercive operators. With duality mapping, the regularized formulations and a derived fi...This paper studies the Browder-Tikhonov regularization of a second-order evolution hemivariational inequality (SOEHVI) with non-coercive operators. With duality mapping, the regularized formulations and a derived first-order evolution hemivariational inequality (FOEHVI) for the problem considered are presented. By applying the Browder-Tikhonov regularization method to the derived FOEHVI, a sequence of regularized solutions to the regularized SOEHVI is constructed, and the strong convergence of the whole sequence of regularized solutions to a solution to the problem is proved.展开更多
In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the ...In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.展开更多
面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线...面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线性地衡量数据特征之间的关联性,且公平地根据一个特征变量中包含另一个特征变量的信息量来去除冗余特征,有效解决虚假数据注入攻击定位检测方法普遍面临的量测数据高维冗余问题;同时提出一种具有正反馈信息传递作用的双层置信极端梯度提升树来对各节点状态进行分类,通过结合电网拓扑关系学习标签相关性,从而有选择性地利用前序标签有效预测信息,来减少后续分类器学习到的前序标签预测信息中包含的错误,最终实现对受攻击位置的精确定位。在IEEE-14、IEEE-57节点系统上进行大量仿真,算例结果验证了所提方法的有效性,且相较于其他方法具有更高的准确率、精度、召回率、F1值和AUC(area under curve)值。展开更多
文摘Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
基金supported by the National Hi-tech Research and Development Program of China(863Program)(No.2007AA09Z310) National Natural Science Foundation of China(Grant No.40774029 40374024)+1 种基金 the Fundamental Research Funds for the Central Universities(Grant No.2010ZY53) the Program for New Century Excellent Talents in University(NCET)
文摘Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.
基金supported by the National Natural Science Foundation of China(Nos.11101069,11171237,11471059,and 81171411)the China Postdoctoral Science Foundation(Nos.2014M552328 and2015T80967)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘This paper studies the Browder-Tikhonov regularization of a second-order evolution hemivariational inequality (SOEHVI) with non-coercive operators. With duality mapping, the regularized formulations and a derived first-order evolution hemivariational inequality (FOEHVI) for the problem considered are presented. By applying the Browder-Tikhonov regularization method to the derived FOEHVI, a sequence of regularized solutions to the regularized SOEHVI is constructed, and the strong convergence of the whole sequence of regularized solutions to a solution to the problem is proved.
文摘In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.
文摘现有的基于双向长短时记忆(BiLSTM)网络的命名实体识别(NER)模型难以全面理解文本的整体语义以及捕捉复杂的实体关系。因此,提出一种基于全域信息融合和多维关系感知的NER模型。首先,通过BERT(Bidirectional Encoder Representations from Transformers)获取输入序列的向量表示,并结合BiLSTM进一步学习输入序列的上下文信息。其次,提出由梯度稳定层和特征融合模块组成的全域信息融合机制:前者使模型保持稳定的梯度传播并更新优化输入序列的表示,后者则融合BiLSTM的前后向表示获取更全面的特征表示。接着,构建多维关系感知结构学习不同子空间单词的关联性,以捕获文档中复杂的实体关系。此外,使用自适应焦点损失函数动态调整不同类别实体的权重,提高模型对少数类实体的识别性能。最后,在7个公开数据集上将所提模型和11个基线模型进行对比,实验结果表明所提模型的F1值均优于对比模型,可见该模型的综合性较优。
文摘面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线性地衡量数据特征之间的关联性,且公平地根据一个特征变量中包含另一个特征变量的信息量来去除冗余特征,有效解决虚假数据注入攻击定位检测方法普遍面临的量测数据高维冗余问题;同时提出一种具有正反馈信息传递作用的双层置信极端梯度提升树来对各节点状态进行分类,通过结合电网拓扑关系学习标签相关性,从而有选择性地利用前序标签有效预测信息,来减少后续分类器学习到的前序标签预测信息中包含的错误,最终实现对受攻击位置的精确定位。在IEEE-14、IEEE-57节点系统上进行大量仿真,算例结果验证了所提方法的有效性,且相较于其他方法具有更高的准确率、精度、召回率、F1值和AUC(area under curve)值。