The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodyn...The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodynamics.Threedimensional wave equations of soil are decoupled through differential transformation and variable separation.Consequently,expressions of soil displacements and horizontal resistances can be obtained.An analytical solution of the pile is derived based on continuity conditions between the pile and soil,subsequently from which expressions of the complex impedances are deduced.Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile.Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.展开更多
Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in...Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in non-linear structural analysis,three-node beam elements are used to deduce shape functions and stiffness matrices in dynamic equations of flexible elements. Static condensation method was used to obtain the finial dynamic equations of three-node beam elements. According to geometrical relations of nodal displacements in concomitant and global coordinate system,dynamic equations of elements can be transformed to global coordinate system by concomitant coordinate method in order to build the global dynamic equations. Analyzed amplitude condition of flexible arm support of a port crane,the results show that second-order effect should be considered in kinetic-elastic analysis for heavy load machinery of big flexibility.展开更多
The second order effect is the interaction between the vertical load and the deformation in a vertically forced element. In order to deduce a more brief but practical method, which has considered the second order effe...The second order effect is the interaction between the vertical load and the deformation in a vertically forced element. In order to deduce a more brief but practical method, which has considered the second order effect in a sway frame, some factors which affect the second order deformation in a sway frame should be generalized based on a more accurate method. Nonlinear finite element is adopted in this paper, and according to this theory, a program, which can calculate the inner force and the deformation of the sway frame considering the second order effects is coded.展开更多
In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Usin...In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Using the perturbation method,we analyze the first-and second-order sideband generations in the output field from the system under the actions of a strong control field and a weak probe field.Numerical simulations show that the Kerr nonlinearity can lead to the occurrence of the asymmetric line shape in the transmission of the probe field.Comparing with traditional scheme for generating the second-order sideband,our spectral shape of the second-order sideband is amplified and becomes asymmetric,which has potential applications in precision measurement,high-sensitivity devices,and frequency conversion.展开更多
We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the ...We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the Kerr effect increases,the absorption curve exhibits an asymmetric-symmetric-asymmetric transition,and the zero absorption point shifts with the increase of the Kerr effect.Furthermore,by changing the strength of the Kerr effect,we can control the width of the transparent window,and the position of the zero-absorption point and meanwhile change the left and right width of the absorption peak.The asymmetry absorption curve can be employed to improve the quality factor of the cavity when the frequency detuning is tuned to be around the right peak.The simple dependence of the zeroabsorption point on the strength of Kerr effect suggests that the strength of Kerr effect can be measured by measuring the position of the zero-absorption point in a possible application.展开更多
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de...Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.展开更多
A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemen...A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Crystal data for the title compound are as follows: orthorhombic system, space group P212121 with a = 13.8287(7), b = 14.0715(7), c = 25.7403(12) A^°, V = 5008.8(4) A^°3, Mr = 1333.08, Z = 4, F(000) = 2644, Dc = 1.768 g/cm^3, μ(MoKα) = 3.189 mm^-1, the final R = 0.0351 and wR = 0.0814 (I 〉 2σ(I)). Compound 1 displays an 8-connected bcu topology 3D framework and hydrogen-bonding interactions stabilize the solid-state structure. The vibrational circular dichroism (VCD) spectrum and second-order nonlinear optical effect of compound 1 have been studied in the solid state.展开更多
This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave fo...This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.展开更多
Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both t...Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both the polarization state of the fundamental and harmonic beams,thereby affecting the accuracy of the obtained second-order nonlinear susceptibility.Here,we propose a data correction method to solve this problem to obtain accurate secondorder nonlinear susceptibility.The feasibility and generality of the method are demonstrated through theoretical and experimental validation.展开更多
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress...To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.展开更多
In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.T...In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.展开更多
In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material ...In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.展开更多
In this study,two new dendronized nonlinear optical(NLO)polymers were synthesized with high FTC chromophore loading density by introduction of high generation chromophore dendrons on the side chains.Due to their suita...In this study,two new dendronized nonlinear optical(NLO)polymers were synthesized with high FTC chromophore loading density by introduction of high generation chromophore dendrons on the side chains.Due to their suitable molecular weights,both of them possessed good solubility in common solvents.They also inherited the advantages of dendrimers(large NLO coefficient),especially for PG2 whose NLO coefficient d33 value was as high as 282 pm·V^–1.Also,PG2 had a good temporal stability with 80%of its maximum value being retained at the temperature as high as 129℃.展开更多
The existence of homoclinic solutions for the second-order p-Laplacian differential system( ρ( t) Φp( u'( t))) '-s( t) Φp( u( t))+ λf( t,u( t)) = 0 with impulsive effects Δ( ρ( tj) Φp( u'( tj))) = I...The existence of homoclinic solutions for the second-order p-Laplacian differential system( ρ( t) Φp( u'( t))) '-s( t) Φp( u( t))+ λf( t,u( t)) = 0 with impulsive effects Δ( ρ( tj) Φp( u'( tj))) = Ij( u( tj)) is studied. By using three critical points theorem and variational methods, the sufficient condition is established to guarantee that this p-Laplacian differential system with impulsive effects has at least one nontrivial homoclinic solution. Besides,an example is presented to illustrate the main result in the end of this paper.展开更多
In this paper,we investigate the photon correlations and the statistical properties of light produced by an optical cavity with an embedded quantum well interacting with squeezed light.We show that the squeezed source...In this paper,we investigate the photon correlations and the statistical properties of light produced by an optical cavity with an embedded quantum well interacting with squeezed light.We show that the squeezed source substantially improves the intensity of the emitted light and generates a narrowing and a duplication of the spectrum peaks.With a strong dependence on frequency detuning,the cavity produces considerably squeezed radiation,and perfect squeezing is predicted for weak light–matter interactions.Furthermore,the system under consideration presents a bunching effect of the transmitted radiation resulting from weak pumping of the coherent field.The results obtained may have potential applications in the fields of very accurate measurement and quantum computing.展开更多
The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals...The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems.展开更多
In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order ...In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.展开更多
Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest managemen...Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.展开更多
Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer...Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer has attracted more and more attention and recognition.Luteolin(LUT)and glycyrrhetinic(GA)are natural compounds extracted from Chinese herbal medicine.LUT exhibits various biological activity including anti-inflammatory,antibacterial,antiviral,anti-tumor,and neuroprotective effects.GA significantly inhibits the growth and metastasis of cancer cells.However,the low water solubility of both compounds hinders their clinical applications.In this study,rod-shaped nanoparticles(NPs)self-assembled from LUT and GA were designed to enhance drug solubility and tumor-targeting capability.We verified that the assembly mechanism of the NPs was π-π stacking.These NPs significantly inhibited the proliferation of liver cancer cells while had no significant effect on normal liver cells.In a mouse model of liver cancer,these NPs demonstrated superior tumor-targeting ability due to the enhanced permeability and retention effect,and the affinity of GA for liver cancer cells,resulting in better therapeutic efficacy with lower systemic toxicity.Results of network pharmacology analysis showed that LUT and GA respectively targeted estrogen receptor 1(ESR1)protein and cyclin-dependent kinase 1(CDK1)protein to corporately induce tumor cell cycle arrest,which induced the inhibition of tumor cell proliferation.In conclusion,this study provides a novel reference for the treatment of liver cancer.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51708064the National Key Research and Development Program of China under Grant No.2016YFE0200100
文摘The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodynamics.Threedimensional wave equations of soil are decoupled through differential transformation and variable separation.Consequently,expressions of soil displacements and horizontal resistances can be obtained.An analytical solution of the pile is derived based on continuity conditions between the pile and soil,subsequently from which expressions of the complex impedances are deduced.Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile.Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.
文摘Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in non-linear structural analysis,three-node beam elements are used to deduce shape functions and stiffness matrices in dynamic equations of flexible elements. Static condensation method was used to obtain the finial dynamic equations of three-node beam elements. According to geometrical relations of nodal displacements in concomitant and global coordinate system,dynamic equations of elements can be transformed to global coordinate system by concomitant coordinate method in order to build the global dynamic equations. Analyzed amplitude condition of flexible arm support of a port crane,the results show that second-order effect should be considered in kinetic-elastic analysis for heavy load machinery of big flexibility.
文摘The second order effect is the interaction between the vertical load and the deformation in a vertically forced element. In order to deduce a more brief but practical method, which has considered the second order effect in a sway frame, some factors which affect the second order deformation in a sway frame should be generalized based on a more accurate method. Nonlinear finite element is adopted in this paper, and according to this theory, a program, which can calculate the inner force and the deformation of the sway frame considering the second order effects is coded.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174344 and 12175199)Foundation of Department of Science and Technology of Zhejiang Province(Grant No.2022R52047)。
文摘In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Using the perturbation method,we analyze the first-and second-order sideband generations in the output field from the system under the actions of a strong control field and a weak probe field.Numerical simulations show that the Kerr nonlinearity can lead to the occurrence of the asymmetric line shape in the transmission of the probe field.Comparing with traditional scheme for generating the second-order sideband,our spectral shape of the second-order sideband is amplified and becomes asymmetric,which has potential applications in precision measurement,high-sensitivity devices,and frequency conversion.
基金Supported by the Key Scientific Research Plan of Colleges and Universities in Henan Province(23B140006)the National Natural Science Foundation of China(11965017)。
文摘We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the Kerr effect increases,the absorption curve exhibits an asymmetric-symmetric-asymmetric transition,and the zero absorption point shifts with the increase of the Kerr effect.Furthermore,by changing the strength of the Kerr effect,we can control the width of the transparent window,and the position of the zero-absorption point and meanwhile change the left and right width of the absorption peak.The asymmetry absorption curve can be employed to improve the quality factor of the cavity when the frequency detuning is tuned to be around the right peak.The simple dependence of the zeroabsorption point on the strength of Kerr effect suggests that the strength of Kerr effect can be measured by measuring the position of the zero-absorption point in a possible application.
基金supported by the National Natural Science Foundation of China under Grants 62476138 and 42375016.
文摘Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.
基金supported by National Natural Science Foundation of China(21401147)Basic Research Program of Natural Science from Shaanxi Provincial Government(2015JQ2032)+2 种基金Scientific Research Program from Education Department of Shaanxi Provincial Government(2013JK0654)Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University(201219)the Program for Distinguished Young Scholars of Xi’an Polytechnic University(201403)
文摘A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Crystal data for the title compound are as follows: orthorhombic system, space group P212121 with a = 13.8287(7), b = 14.0715(7), c = 25.7403(12) A^°, V = 5008.8(4) A^°3, Mr = 1333.08, Z = 4, F(000) = 2644, Dc = 1.768 g/cm^3, μ(MoKα) = 3.189 mm^-1, the final R = 0.0351 and wR = 0.0814 (I 〉 2σ(I)). Compound 1 displays an 8-connected bcu topology 3D framework and hydrogen-bonding interactions stabilize the solid-state structure. The vibrational circular dichroism (VCD) spectrum and second-order nonlinear optical effect of compound 1 have been studied in the solid state.
基金supported by the National Natural Science Foundation of China(Nos.51239008 and 51279130)
文摘This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.
基金This work was supported by the National Natural Science Foundation of China(No.U2230203)the Fundamental Research Funds for the Central Universities.
文摘Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both the polarization state of the fundamental and harmonic beams,thereby affecting the accuracy of the obtained second-order nonlinear susceptibility.Here,we propose a data correction method to solve this problem to obtain accurate secondorder nonlinear susceptibility.The feasibility and generality of the method are demonstrated through theoretical and experimental validation.
基金The National Key Research and Development Program of China under contract No.2023YFC3107701the National Natural Science Foundation of China under contract No.42375143.
文摘To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
基金supported by the National Key Research and Development Program of China under Grant 2023YFB2407400。
文摘In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.
文摘In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.
基金financially supported by the National Natural Science Foundation of China (No. 21734007)
文摘In this study,two new dendronized nonlinear optical(NLO)polymers were synthesized with high FTC chromophore loading density by introduction of high generation chromophore dendrons on the side chains.Due to their suitable molecular weights,both of them possessed good solubility in common solvents.They also inherited the advantages of dendrimers(large NLO coefficient),especially for PG2 whose NLO coefficient d33 value was as high as 282 pm·V^–1.Also,PG2 had a good temporal stability with 80%of its maximum value being retained at the temperature as high as 129℃.
基金National Natural Science Foundations of China(No.11271371,No.10971229)
文摘The existence of homoclinic solutions for the second-order p-Laplacian differential system( ρ( t) Φp( u'( t))) '-s( t) Φp( u( t))+ λf( t,u( t)) = 0 with impulsive effects Δ( ρ( tj) Φp( u'( tj))) = Ij( u( tj)) is studied. By using three critical points theorem and variational methods, the sufficient condition is established to guarantee that this p-Laplacian differential system with impulsive effects has at least one nontrivial homoclinic solution. Besides,an example is presented to illustrate the main result in the end of this paper.
文摘In this paper,we investigate the photon correlations and the statistical properties of light produced by an optical cavity with an embedded quantum well interacting with squeezed light.We show that the squeezed source substantially improves the intensity of the emitted light and generates a narrowing and a duplication of the spectrum peaks.With a strong dependence on frequency detuning,the cavity produces considerably squeezed radiation,and perfect squeezing is predicted for weak light–matter interactions.Furthermore,the system under consideration presents a bunching effect of the transmitted radiation resulting from weak pumping of the coherent field.The results obtained may have potential applications in the fields of very accurate measurement and quantum computing.
基金support of the National Natural Science Foundation of China(Grant Nos.52192611,51872031,61904013,and 62405157)China Postdoctoral Science Foundation(Nos.2023M741890 and GZC20231215)the Fundamental Research Funds for the Central Universities.
文摘The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems.
文摘In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.
文摘Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.
基金the financial support from Henan Province Natural Science Foundation(No.252300420583)Henan Provincial Science and Technology Research Project(Nos.242102310455,242102310473,242102310517)the Key Project of Science and Technology Research funded by the Henan Provincial Department of Education(No.24A350002)。
文摘Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer has attracted more and more attention and recognition.Luteolin(LUT)and glycyrrhetinic(GA)are natural compounds extracted from Chinese herbal medicine.LUT exhibits various biological activity including anti-inflammatory,antibacterial,antiviral,anti-tumor,and neuroprotective effects.GA significantly inhibits the growth and metastasis of cancer cells.However,the low water solubility of both compounds hinders their clinical applications.In this study,rod-shaped nanoparticles(NPs)self-assembled from LUT and GA were designed to enhance drug solubility and tumor-targeting capability.We verified that the assembly mechanism of the NPs was π-π stacking.These NPs significantly inhibited the proliferation of liver cancer cells while had no significant effect on normal liver cells.In a mouse model of liver cancer,these NPs demonstrated superior tumor-targeting ability due to the enhanced permeability and retention effect,and the affinity of GA for liver cancer cells,resulting in better therapeutic efficacy with lower systemic toxicity.Results of network pharmacology analysis showed that LUT and GA respectively targeted estrogen receptor 1(ESR1)protein and cyclin-dependent kinase 1(CDK1)protein to corporately induce tumor cell cycle arrest,which induced the inhibition of tumor cell proliferation.In conclusion,this study provides a novel reference for the treatment of liver cancer.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.