In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with l...In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with low molecular weight and amorphous state.X-ray diffraction results revealed that the natural starch crystalline region was largely disrupted by ionic liquid owing to the broken intermolecular and intramolecular hydrogen bonds.After hydrolysis,the morphology of starch changed from particles of native corn starch into little pieces,and their molecular weight could be effectively regulated during the hydrolysis process,and also the hydrolyzed starch samples exhibited decreased thermal stability with the extension of hydrolysis time.This work would counsel as a powerful tool for the development of native starch in realistic applications.展开更多
Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection ...Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization.展开更多
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa...While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.展开更多
The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in a...The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.展开更多
Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)into value-added products has been regarded as an effective way to achieve the goal of carbon neutrality.The intrinsic activity of electrocatalysts,as well as the rea...Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)into value-added products has been regarded as an effective way to achieve the goal of carbon neutrality.The intrinsic activity of electrocatalysts,as well as the reaction microenvironment,play an important role in improving the conversion efficiency of CO_(2).Herein,we report an ionic liquidfunctionalized Au/Pd heterostructure as the electrocatalyst for CO_(2)RR via introducing 1-butyl-1-methylpyrrolidine bis(trifluoromethylsulfonyl)imide([BMPyrr][NTf_(2)])ionic liquid.Au nanoclusters are epitaxially confined on Pd nanosheets in heterostructure,resulting in abundant and well-defined heterointerfaces that work as highly active catalytic sites.Notably,the[BMPyrr][NTf_(2)]achieves charge redistribution at the Au-Pd heterointerfaces,which helps to stabilize*CO_(2)^(˙-)intermediate and further reduce the energy barrier of *COOH formation.Furthermore,the[BMPyrr][NTf_(2)]molecules with high CO_(2)adsorption ability is beneficial to construct a CO_(2)-rich reaction microenvironment at the gas-liquid-solid three-phase interface.The hybrid electrocatalyst exhibits greatly improved CO Faradaic efficiency in a broad potential range and CO partial current density.This work provides a novel strategy for designing robust CO_(2)RR electrocatalysts via ionic liquid-mediated surface modification.展开更多
The inability to access brain tissue has greatly hindered our ability to study and care for individuals suffering from psychiatric and neurological conditions.Critics have questioned efforts to develop peripheral bloo...The inability to access brain tissue has greatly hindered our ability to study and care for individuals suffering from psychiatric and neurological conditions.Critics have questioned efforts to develop peripheral blood biomarkers in neurological and psychiatric disorders based on the assertion that disease pathology is limited to the brain.The discovery that all tissues,including the brain,release extracellular vesicles(Raposo and Stoorvogel,2013)and cell free DNAs(Chan et al.,2013)into various body fluids has provided a potential way to measure activity from inaccessible tissues like the central nervous system(CNS)and has given rise to the term“liquid biopsy.”The development of liquid biopsies that can diagnose and predict the course of psychiatric and neurological disorders would be transformative.The ability to predict episodic events such as mania,depression,and risk for suicide would be particularly useful for psychiatric care as it would enable the development of interventions that prevent mortality and improve outcomes.Additionally,biomarkers that are informative about drug response and aid in treatment decisions would be a significant advance in psychiatric care as it would prevent patients from having to endure multiple courses of ineffective treatments and side effects.展开更多
The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Chr...The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Christov double diffusions.The thermal and solutal stratifications at the surface are also accounted. The relevant nonlinear ordinary differential systems after using appropriate transformations are solved for the solutions with the homotopy analysis method(HAM). The effects of various involved variables on the temperature, velocity, concentration, skin friction, mass transfer rate, and heat transfer rate are discussed through graphs. From the obtained results,decreasing tendencies for the radial, axial, and tangential velocities are observed. Temperature is a decreasing function of the Reynolds number, thermal relaxation parameter,and Prandtl number. Moreover, the mass diffusivity decreases with the Schmidt number.展开更多
This paper aims to investigate exact solutions for a second-grade fluid flow with the inverse method. By assuming the relation between the vorticity field and the streamfunction, the exact solutions of the motion of p...This paper aims to investigate exact solutions for a second-grade fluid flow with the inverse method. By assuming the relation between the vorticity field and the streamfunction, the exact solutions of the motion of plane second-grade fluids are investigated and obtained. The solutions obtained include simple Couette flows, slit jet flows and uniform flows over a series of distributed obstacles.展开更多
This paper is concerned with the steady flow of a second-grade fluid between two porous disks rotating eccentrically under the effect of a magnetic field. A perturbation solution for the velocity field is presented un...This paper is concerned with the steady flow of a second-grade fluid between two porous disks rotating eccentrically under the effect of a magnetic field. A perturbation solution for the velocity field is presented under the assumption that the second-grade fluid parameter β is small. It is also studied the effect of all the parameters on the horizontal force per unit area exerted by the fluid on the disks. It is found that the x- and y-components of the force increase and decrease, respectively, when the second-grade fluid parameter β and the Hartmann number M increase. It is seen that the forces in the x- and y-directions on the top disk increase with the increase of the suction/injection velocity parameter P but those on the bottom disk decrease. It is shown that the force acting on the top disk is greater than that acting on the bottom disk in view of the axial velocity in the positive z-direction. It is observed that the increase in the Reynolds number R leads to a rise in the horizontal force.展开更多
This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equati...This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equations which are then solved by the homotopy analysis method (HAM). Two-dimensional and axisymmetric shrinking flow cases are discussed.展开更多
In this paper, we consider the second-grade fluid equations in a 2D exterior domain satisfying the non-slip boundary conditions. The second-grade fluid model is a wellknown non-Newtonian fluid model, with two paramete...In this paper, we consider the second-grade fluid equations in a 2D exterior domain satisfying the non-slip boundary conditions. The second-grade fluid model is a wellknown non-Newtonian fluid model, with two parameters: α, which represents the length-scale,while ν > 0 corresponds to the viscosity. We prove that, as ν, α tend to zero, the solution of the second-grade fluid equations with suitable initial data converges to the one of Euler equations, provided that ν = o(α^(4/3)). Moreover, the convergent rate is obtained.展开更多
A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Coue...A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Couette flows subjected to suction or blowing forces, and planar elongational flows are derived. In addition, two new classes of exact solutions for a second-grade fluid flow are found. The obtained exact solutions show that the non-Newtonian second-grade flow behavior depends not only on the material viscosity but also on the material elasticity. Finally, some boundary value problems are discussed.展开更多
The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow.The flow is initiated by the stretching of a sheet at an exponential rate...The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow.The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction.The buoyancy effects in terms of temperature and concentration differences are inserted in the x-momentum equation.The aspects of heat and mass transfer are studied using dimensionless thermophoresis,Schmidt and Brownian motion parameters.The governing coupled partial differential system(PDEs)is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations.The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c.Finally,the quantitative effects of emerging dimensionless quantities on the nondimensional velocity,temperature and mass concentration in the boundary layer are conferred graphically,and inferences are drawn that important quantities of interest are substantially affected by these parameters.It is concluded that non-similar modeling,in contrast to similar models,is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.展开更多
Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the inte...Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.展开更多
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL...Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.展开更多
Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat...Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat transfer,which are widely used in gas adsorption and sep-aration.Metal–organic frameworks(MOFs)with merits like large surface area,inherent porous structure and adjustable topology have been considered as one of the best candidates for PLs construction.This review presents the state-of-the-art status on the fabrication strategy of MOFs-based PLs and their CO_(2) absorption and utilization performance,and the positive effects of porosity and functional modification on the absorption-desorption property,selectivity of target product,and regeneration ability are well summarized.Finally,the challenges and prospects for MOFs-based PLs in the optimization of preparation,the coupling of multiple removal techniques,the in situ characterization methods,the regeneration and cycle stability,the environmental impact as well as expansion of application are proposed.展开更多
Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based ...Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development.展开更多
The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid met...The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid metal droplets,we analyze the influence of different initial conditions and substrate materials on droplet spreading,impact force,and elastic wave propagation on the substrate.It is found that an agglomeration phenomenon can be observed when the liquid metal droplets impact onto a soft elastomer substrate,which is not observed as a metal substrate is employed.Regardless of the substrate material,when surface tension dominates the diffusion,the diffusion factor of droplets is proportional to We(Weber number).It is also observed that the self-similarity of liquid metal droplet impact force on copper substrates,which is not the case for soft elastomer substrates.Using smoothed particle hydrodynamics(SPH)simulations,the time-domain curve and peak point of the droplet can be well predicted for a metal substrate.Furthermore,by recording the acceleration signal on the substrates,we further obtain the energy radiated by elastic waves,providing an explanation for energy conversion during the impact process with varying parameters.The results provide an additional understanding on the complex impact behaviors of liquid metal droplets.展开更多
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car...Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).展开更多
文摘In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with low molecular weight and amorphous state.X-ray diffraction results revealed that the natural starch crystalline region was largely disrupted by ionic liquid owing to the broken intermolecular and intramolecular hydrogen bonds.After hydrolysis,the morphology of starch changed from particles of native corn starch into little pieces,and their molecular weight could be effectively regulated during the hydrolysis process,and also the hydrolyzed starch samples exhibited decreased thermal stability with the extension of hydrolysis time.This work would counsel as a powerful tool for the development of native starch in realistic applications.
文摘Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization.
基金supported by National Key Research and Development Program of China(2022YFB3804902,2022YFB3804900)the National Natural Science Foundation of China(52203226,52161145406,42376045)the Fundamental Research Funds for the Central Universities(2232024Y-01,2232025D-02).
文摘While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.
基金financially supported by the National Natural Science Foundation of China(No.52073214)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008).
文摘The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.
基金supported by the National Natural Science Foundation Joint Fund Project(No.U24A2042)Basic Research Foundation of Zhejiang Provincial Universities(No.G23224161033)the National Natural Science Foundation of China(Nos.52072342 and 52377216).
文摘Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)into value-added products has been regarded as an effective way to achieve the goal of carbon neutrality.The intrinsic activity of electrocatalysts,as well as the reaction microenvironment,play an important role in improving the conversion efficiency of CO_(2).Herein,we report an ionic liquidfunctionalized Au/Pd heterostructure as the electrocatalyst for CO_(2)RR via introducing 1-butyl-1-methylpyrrolidine bis(trifluoromethylsulfonyl)imide([BMPyrr][NTf_(2)])ionic liquid.Au nanoclusters are epitaxially confined on Pd nanosheets in heterostructure,resulting in abundant and well-defined heterointerfaces that work as highly active catalytic sites.Notably,the[BMPyrr][NTf_(2)]achieves charge redistribution at the Au-Pd heterointerfaces,which helps to stabilize*CO_(2)^(˙-)intermediate and further reduce the energy barrier of *COOH formation.Furthermore,the[BMPyrr][NTf_(2)]molecules with high CO_(2)adsorption ability is beneficial to construct a CO_(2)-rich reaction microenvironment at the gas-liquid-solid three-phase interface.The hybrid electrocatalyst exhibits greatly improved CO Faradaic efficiency in a broad potential range and CO partial current density.This work provides a novel strategy for designing robust CO_(2)RR electrocatalysts via ionic liquid-mediated surface modification.
基金supported by Department of Defense grant HT9425-24-1-0030 a grant from the Stanley Medical Research Institute(to SS).
文摘The inability to access brain tissue has greatly hindered our ability to study and care for individuals suffering from psychiatric and neurological conditions.Critics have questioned efforts to develop peripheral blood biomarkers in neurological and psychiatric disorders based on the assertion that disease pathology is limited to the brain.The discovery that all tissues,including the brain,release extracellular vesicles(Raposo and Stoorvogel,2013)and cell free DNAs(Chan et al.,2013)into various body fluids has provided a potential way to measure activity from inaccessible tissues like the central nervous system(CNS)and has given rise to the term“liquid biopsy.”The development of liquid biopsies that can diagnose and predict the course of psychiatric and neurological disorders would be transformative.The ability to predict episodic events such as mania,depression,and risk for suicide would be particularly useful for psychiatric care as it would enable the development of interventions that prevent mortality and improve outcomes.Additionally,biomarkers that are informative about drug response and aid in treatment decisions would be a significant advance in psychiatric care as it would prevent patients from having to endure multiple courses of ineffective treatments and side effects.
基金Project supported by the Natural Science and Engineering Research Council(NSERC)of Canada(No.NSERC-RGPIN204992)
文摘The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Christov double diffusions.The thermal and solutal stratifications at the surface are also accounted. The relevant nonlinear ordinary differential systems after using appropriate transformations are solved for the solutions with the homotopy analysis method(HAM). The effects of various involved variables on the temperature, velocity, concentration, skin friction, mass transfer rate, and heat transfer rate are discussed through graphs. From the obtained results,decreasing tendencies for the radial, axial, and tangential velocities are observed. Temperature is a decreasing function of the Reynolds number, thermal relaxation parameter,and Prandtl number. Moreover, the mass diffusivity decreases with the Schmidt number.
基金supported by the National Natural Science Foundation of China (Grant No.10472063)
文摘This paper aims to investigate exact solutions for a second-grade fluid flow with the inverse method. By assuming the relation between the vorticity field and the streamfunction, the exact solutions of the motion of plane second-grade fluids are investigated and obtained. The solutions obtained include simple Couette flows, slit jet flows and uniform flows over a series of distributed obstacles.
文摘This paper is concerned with the steady flow of a second-grade fluid between two porous disks rotating eccentrically under the effect of a magnetic field. A perturbation solution for the velocity field is presented under the assumption that the second-grade fluid parameter β is small. It is also studied the effect of all the parameters on the horizontal force per unit area exerted by the fluid on the disks. It is found that the x- and y-components of the force increase and decrease, respectively, when the second-grade fluid parameter β and the Hartmann number M increase. It is seen that the forces in the x- and y-directions on the top disk increase with the increase of the suction/injection velocity parameter P but those on the bottom disk decrease. It is shown that the force acting on the top disk is greater than that acting on the bottom disk in view of the axial velocity in the positive z-direction. It is observed that the increase in the Reynolds number R leads to a rise in the horizontal force.
文摘This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equations which are then solved by the homotopy analysis method (HAM). Two-dimensional and axisymmetric shrinking flow cases are discussed.
基金Aibin Zang was supported partially by the National Natural Science Foundation of China (11771382, 12061080, 12261093)the Jiangxi Provincial Natural Science Foundation (20224ACB201004)。
文摘In this paper, we consider the second-grade fluid equations in a 2D exterior domain satisfying the non-slip boundary conditions. The second-grade fluid model is a wellknown non-Newtonian fluid model, with two parameters: α, which represents the length-scale,while ν > 0 corresponds to the viscosity. We prove that, as ν, α tend to zero, the solution of the second-grade fluid equations with suitable initial data converges to the one of Euler equations, provided that ν = o(α^(4/3)). Moreover, the convergent rate is obtained.
基金supported by the National Natural Science Foundation of China (No. 10772110)
文摘A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Couette flows subjected to suction or blowing forces, and planar elongational flows are derived. In addition, two new classes of exact solutions for a second-grade fluid flow are found. The obtained exact solutions show that the non-Newtonian second-grade flow behavior depends not only on the material viscosity but also on the material elasticity. Finally, some boundary value problems are discussed.
文摘The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow.The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction.The buoyancy effects in terms of temperature and concentration differences are inserted in the x-momentum equation.The aspects of heat and mass transfer are studied using dimensionless thermophoresis,Schmidt and Brownian motion parameters.The governing coupled partial differential system(PDEs)is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations.The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c.Finally,the quantitative effects of emerging dimensionless quantities on the nondimensional velocity,temperature and mass concentration in the boundary layer are conferred graphically,and inferences are drawn that important quantities of interest are substantially affected by these parameters.It is concluded that non-similar modeling,in contrast to similar models,is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.
基金supported by the Russian Science Foundation(23-29-00830).
文摘Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.
基金co-supported by the National Key R&D Program of China(No.2020YFC2201001)the Shenzhen Science and Technology Program,China(No.20210623091808026)。
文摘Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.
基金supported by the Natural Science Foundation of China(22106007 and U23A20120)Beijing Natural Science Foundation(8244060)+2 种基金China Postdoctoral Science Foundation(2023M730143)R&D Program of BeijingMunicipal Education Commission(KZ202210005011)Natural Science Foundation of Hebei Province(B2021208033).
文摘Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat transfer,which are widely used in gas adsorption and sep-aration.Metal–organic frameworks(MOFs)with merits like large surface area,inherent porous structure and adjustable topology have been considered as one of the best candidates for PLs construction.This review presents the state-of-the-art status on the fabrication strategy of MOFs-based PLs and their CO_(2) absorption and utilization performance,and the positive effects of porosity and functional modification on the absorption-desorption property,selectivity of target product,and regeneration ability are well summarized.Finally,the challenges and prospects for MOFs-based PLs in the optimization of preparation,the coupling of multiple removal techniques,the in situ characterization methods,the regeneration and cycle stability,the environmental impact as well as expansion of application are proposed.
基金supported by the GRDC(Global Research Development Center)Cooperative Hub Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science and ICT(MSIT)(No.RS-2023-00257595).
文摘Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development.
基金supported by the National Natural Science Foundation of China(Grant No.12211530061)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LD22A020001)。
文摘The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid metal droplets,we analyze the influence of different initial conditions and substrate materials on droplet spreading,impact force,and elastic wave propagation on the substrate.It is found that an agglomeration phenomenon can be observed when the liquid metal droplets impact onto a soft elastomer substrate,which is not observed as a metal substrate is employed.Regardless of the substrate material,when surface tension dominates the diffusion,the diffusion factor of droplets is proportional to We(Weber number).It is also observed that the self-similarity of liquid metal droplet impact force on copper substrates,which is not the case for soft elastomer substrates.Using smoothed particle hydrodynamics(SPH)simulations,the time-domain curve and peak point of the droplet can be well predicted for a metal substrate.Furthermore,by recording the acceleration signal on the substrates,we further obtain the energy radiated by elastic waves,providing an explanation for energy conversion during the impact process with varying parameters.The results provide an additional understanding on the complex impact behaviors of liquid metal droplets.
基金support from the National Natural Science Foundation of China(No’s.U22B2071,51874211,52031008)the Chilwee Group(CWDY-ZH-YJY-202101-001).
文摘Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).