Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa...Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.展开更多
The unsteady magnetohydrodynamical(MHD)free convection flow of an incompressible,electrically conducting hybrid nanofluid within a vertical cylindrical geometry is investigated,incorporating the effects of thermal rad...The unsteady magnetohydrodynamical(MHD)free convection flow of an incompressible,electrically conducting hybrid nanofluid within a vertical cylindrical geometry is investigated,incorporating the effects of thermal radiation,viscous dissipation,and internal heat generation.The system is subjected to a time-periodic boundary temperature condition.The Laplace and finite Hankel transforms are used to derive the exact solutions for the velocity and temperature distributions.The effects of various key physical parameters,including the Richardson number,the Eckert number,the radiation parameter,the heat source parameter,and the nanoparticle volume fraction,are considered.The numerical results reveal that increasing the volume fraction significantly enhances the thermal conductivity and temperature,while the magnetic field intensity and viscous dissipation strongly influence the fluid motion and heat transport.Additionally,the pulsating boundary conditions produce distinct oscillatory behaviors in both the velocity and temperature fields.These findings provide important insights into optimizing the heat transfer performance in cylindrical systems such as electronic cooling modules and energy storage devices operating under dynamic thermal conditions.展开更多
Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blad...Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blades is essential in the routine design. In this work, the Time Collocation Method (TCM) which uses the cubic B-spline to approximate flow variables is first thoroughly studied and then combined with the moving grid technique to analyze aeroelastic flow fields. To showcase its advantage over the Harmonic Balance (HB) method which uses a truncated Fourier series to approximately represent flow variables, a matrix analysis of the one-dimensional advection equation is first performed. The results of stability analysis are verified by two test cases: the Durham linear oscillating turbine cascade and a two-blade-row transonic compressor. The vibration of the blade of the first case is driven by a motor while the excitation force of the second case comes from blade row interaction. The results show that the time collocation method has a faster convergence rate and is more stable than the harmonic balance method, especially for cases with a large maximum grid reduced frequency. More importantly, the time collocation method is capable of accurately predicting aeroelastic performance of turbomachinery blades.展开更多
Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Se...Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure.展开更多
Revealing the combined influence of interfacial damage and nonlinear factors on the forced vibration is significant for the stability design of fluid-conveying pipes, which are usually assembled in aircraft. The nonli...Revealing the combined influence of interfacial damage and nonlinear factors on the forced vibration is significant for the stability design of fluid-conveying pipes, which are usually assembled in aircraft. The nonlinear forced resonance of fluid-conveying layered pipes with a weak interface and a movable boundary under the external excitation is studied. The pipe is simply supported at both ends, with one end subject to a viscoelastic boundary constraint described by KelvinVoigt model. The weak interface in the pipe is considered in the refined displacement field of the layered pipe employing the interfacial cohesive law. The governing equations are derived by Hamilton's variational principle. Geometric nonlinearities including nonlinear curvature, longitudinal inertia nonlinearity and nonlinear constraint force are comprehensively considered during the theoretical derivation. Amplitude-frequency bifurcation diagrams are obtained utilizing a perturbation-Incremental Harmonic Balance Method(IHBM). Results show that interfacial damage and viscoelastic constraints from boundary and foundation have an important influence on the linear and nonlinear dynamic behavior of the system.展开更多
This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues o...This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources.The proposed active hybrid solar dryer features a drying cabinet,two Direct Current(DC)fans for forced convection,and a resistive heating element powered by a 180 W solar PV panel.An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance,poor weather conditions,or nighttime.Tomatoes,a delicate and in-demand crop,were selected for experimentation due to their high perishability.Three experiments were conducted on the same prototype:natural convection direct solar dryer(NCDSD),forced convection direct solar dryer(FCDSD),and forced convection hybrid solar dryer(FCHSD).Each experiment began with 0.2 kg of tomatoes at 94%moisture content,achieving significant reductions:28.57%with NCDSD,16.667%with FCDSD,and 16.667%with FCHSD.The observed drying rates varied:1.161 kg/h for NCDSD,2.062 kg/h for FCDSD,and 2.8642 kg/h for FCHSD.This study presents a comparative analysis of efficiency,drying rate,and cost-effectiveness,alongside the system’s economic and environmental feasibility.展开更多
The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal ...The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal counterparts,one gains insights into the system's response under new mathematical frameworks.This paper presents a novel method for converting standard continuous differential equations into their fractal equivalents.This conversion occurs after the nonlinear system is transformed into its linear equivalent.Numerical analyses show that there are several resonance sites in the fractal system,which differ from the one resonance point found in the continuous system.One important finding is that the fractal system loses some of its stabilizing power when decaying behavior is transformed into a diffuse pattern.Interestingly,a decrease in the fractal order in resonance settings shows a stabilizing impact,highlighting the dynamics'complexity inside fractal systems.This endeavor to convert to fractals is a revolutionary technique that is being employed for the first time.展开更多
In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar princ...In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar principles.Through the similar experiment and numerical simulation,the distribution of airflow field in the roadway and the spatial and temporal evolution of dust pollution under the conditions of forced ventilation were determined.The airflow field in the roadway can be divided into three zones:jet zone,vortex zone and reflux zone.The dust concentration gradually decreases from the head to the rear of the roadway.Under the forced ventilation conditions,there is a unilateral accumulation of dust,with higher dust concentrations away from the ducts.The position of the equipment has an interception effect on the dust.The maximum error between the test value and the simulation result is 12.9%,which verifies the accuracy of the experimental results.The research results can provide theoretical guidance for the application of dust removal technology in coal mine.展开更多
Background Obesity is the most common metabolic disease in the world. However, the relationship between obesity and lung function is not fully understood. Although several longitudinal studies have shown that increase...Background Obesity is the most common metabolic disease in the world. However, the relationship between obesity and lung function is not fully understood. Although several longitudinal studies have shown that increases in body weight can lead to reductions in pulmonary function, whether this is the case with the Japanese population and whether high body mass index (BMI) status alone represents an appropriate predictor of obstructive lung dysfunction remains unclear.The purpose of present study was to estimate the effect of BMI on lung function measured by spirometry of Japanese patients in general clinics. We measured BMI and performed spirometry on screening patients who had consulted general clinics.Methods Subjects comprised 1231 patients ≥40 years of age (mean age (65.0±12.0) years, 525 men, 706 women) who had consulted clinics in Nagasaki Prefecture, Japan, for non-respiratory disease. BMI was calculated and lung function was measured by spirometry.Results BMI was found to be positively correlated with forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) in men and with maximum mid-expiratory flow (MMF) in all subjects. Following adjustment for relevant factors, a significant positive correlation between BMI and FEV1/FVC was identified for all subjects. Comparison between subjects with normal BMI (18.5-25.0) and higher BMI (25.1-30.0) also demonstrated that FEV1/FVC and percentage of predicted maximum mid-expiratory flow (%MMF) were significantly higher in the latter subjects.Conclusions In a population without marked respiratory disease, higher BMI subjects showed less obstructive pulmonary dysfunction compared to normal BMI subjects. High BMI status alone may be inappropriate as a predictor of obstructive lung dysfunction, particularly in populations with a low prevalence of obesity.展开更多
This article is concerned with the oscillation of the forced second order differ- ential equation with mixed nonlinearities(a(t)(x'(t))γ)'+po(t)xγ(go(t))+n∑t=1pi(t)|x(gi(t))|αi sgn x(gi...This article is concerned with the oscillation of the forced second order differ- ential equation with mixed nonlinearities(a(t)(x'(t))γ)'+po(t)xγ(go(t))+n∑t=1pi(t)|x(gi(t))|αi sgn x(gi(t))=e(t),where γ is a quotient of odd positive integers αi〉0,i=1,2 ……n,a,e,and pi ∈ C([0,∞)R),a(t)〉0,gi:R→R are positive continuous functions on R with lim gi (t)=∞,i=0,1,……,n. Our results generalize and improve the results in a recent article by Sun and Wong[29].展开更多
Using National Centers for Environmental Prediction reanalysis data for the period 28 June to 12 July during 2001 to2013,the secondary circulation(SC)associated with the mei-yu front was quantitatively diagnosed by nu...Using National Centers for Environmental Prediction reanalysis data for the period 28 June to 12 July during 2001 to2013,the secondary circulation(SC)associated with the mei-yu front was quantitatively diagnosed by numerically solving a primitive version of the Sawyer-Eliassen equation.Results demonstrate that a direct SC exists near the mei-yu front zone during mid-summer and the synoptic-scale geostrophic deformations are the main factors determining SC structures.About94%of the sinking strength and 61%of the ascending strength in the SC are induced by the geostrophic deformations.Other terms,such as diabatic heating,ageostrophic dynamical forcing,and frictional forcing,mainly influence the fine flow pattern of the SC.The forced SC produces a frontogenesis area tilting to the north with altitude.Further diagnosis clarifies the positive feedback involving the geostrophic shear forcing and vorticity frontogenesis in the upper-level mei-yu front zone.Furthermore,statistical results indicate that all 34 deep convection cases that occurred in the warm region of the meiyu front over the period 2004-2013 experienced high-level frontogenesis associated with along-jet cold advection.The cyclonic shear forcing"moved"the monsoon SC’s subsidence branch to the warm side of the mei-yu front and caused the subsidence branch to extend downwards to the lower troposphere,conducive to the initiation of deep convection in the warm region of the mei-yu front.展开更多
In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on comp...In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on composite holes is promoted,in view of non-uniform extrusion caused by forced installation.At first,non-uniform extrusion of the hole edge caused by forced installation is analyzed.According to the contact state,expression of hole deformation is given.Then,based on Hertz theory,the maximum extrusion load is obtained with help of deformation expression.By constructing an elastic foundation beam model,3D stress distributed on a hole could be analyzed according to the extrusion load.Then,stress distribution predicted by the above analytical method is compared with that provided by FE considering composite damage.Finally,a forced installation experiment is carried out to analyze the damage distribution of the joint.Results show that a central-symmetrically distributed stress is introduced by the hole-location error.With an increment of the error,strength of composite decreases due to extrusion damage.Therefore,stress presents a concave distribution on the hole.As the hole-location error exceeding 3%,stress decreases gradually due to failure of composite.Damage of holes does not exhibit a centrosymmetric distribution.Serious damage is mainly distributed on the entrance of the hole at the lower sheet.展开更多
An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were ob...An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.展开更多
二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提...二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提升;二语写作研究领域暂未形成明显的核心作者和机构的合作网络;研究主题主要聚焦二语写作教学方法的多元化、二语写作反馈的多焦点、二语写作评估与测试的科学化,以及学习者个体差异的多维影响等方面。基于此,提出未来该领域发展需加强学者、机构之间的相互合作;关注个体学习者写作过程的认知特征与情感因素,尤其重视青少年二语学习过程的研究;扩大二语写作纵向研究规模,推动研究的深入发展。展开更多
The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other asso...The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other associated equations are widely acknowledged for their broad applicability and potential for simulating a wide range of nonlinear phenomena in fluid physics, plasma physics, and various scientific domains. Consequently, the main goal of this study is to use the Yang homotopy perturbation method and the Yang transform decomposition method, along with the Caputo operator for analyzing the FF-KdV equation. The derived approximations are numerically examined and discussed. Our study will show that the two suggested methods are helpful, easy to use, and essential for looking at different nonlinear models that affect complex processes.展开更多
This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of...This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations.展开更多
In this letter,the motion of small gas bubbles within sessile water drops on a vibrating substrate is investigatednumerically using a two-phase diffuse interface method.Depending on the amplitude of the plate vibratio...In this letter,the motion of small gas bubbles within sessile water drops on a vibrating substrate is investigatednumerically using a two-phase diffuse interface method.Depending on the amplitude of the plate vibration,themotion of the gas bubbles falls into three distinct regimes:oscillating within the drop,sticking to the substrate,orescaping from the drop.In particular,the motion of oscillating bubbles follows a harmonic function,and is foundto be closely related to a combined effect of the deformation of the sessile drop and the vibration of the plate.Tointerpret the underlying mechanism,we analyze the dominant forces acting on the bubbles in the non-inertialframework fixed to the plate,and take account of the periodic deformation of the drop,which effectively inducesflow acceleration inside the drop.As a result,we establish a theoretical model to predict the bubble motion,andcorrelate the amplitude and phase difference of the bubble with the Bond and Strouhal numbers.The theoreticalprediction agrees with our numerical results.These findings and theoretical analysis provide new insights intocontrolling bubble motion in sessile drops.展开更多
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing dow...Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42172159 and 42302143)the Postdoctora Fellowship Program of the China Postdoctoral Science Foundation(CPSF)(Grant No.GZB20230864).
文摘Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.
基金Project supported by the National Natural Science Foundation of China(No.12250410244)the Jiangsu Funding Program for Excellent Postdoctoral Talent of China(No.2023ZB884)+2 种基金the Foreign Expert Project funding of China(No.WGXZ2023017L)the Shuang-Chuang(SC)Doctor Program of Jiangsu Provincethe Longshan Scholar Program of Nanjing University of Information Science&Technology。
文摘The unsteady magnetohydrodynamical(MHD)free convection flow of an incompressible,electrically conducting hybrid nanofluid within a vertical cylindrical geometry is investigated,incorporating the effects of thermal radiation,viscous dissipation,and internal heat generation.The system is subjected to a time-periodic boundary temperature condition.The Laplace and finite Hankel transforms are used to derive the exact solutions for the velocity and temperature distributions.The effects of various key physical parameters,including the Richardson number,the Eckert number,the radiation parameter,the heat source parameter,and the nanoparticle volume fraction,are considered.The numerical results reveal that increasing the volume fraction significantly enhances the thermal conductivity and temperature,while the magnetic field intensity and viscous dissipation strongly influence the fluid motion and heat transport.Additionally,the pulsating boundary conditions produce distinct oscillatory behaviors in both the velocity and temperature fields.These findings provide important insights into optimizing the heat transfer performance in cylindrical systems such as electronic cooling modules and energy storage devices operating under dynamic thermal conditions.
基金supported by the Science Center for Gas Turbine Project,China(No.P2022-C-II-001-001)the National Science and Technology Major Project,Chinathe Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2022045).
文摘Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blades is essential in the routine design. In this work, the Time Collocation Method (TCM) which uses the cubic B-spline to approximate flow variables is first thoroughly studied and then combined with the moving grid technique to analyze aeroelastic flow fields. To showcase its advantage over the Harmonic Balance (HB) method which uses a truncated Fourier series to approximately represent flow variables, a matrix analysis of the one-dimensional advection equation is first performed. The results of stability analysis are verified by two test cases: the Durham linear oscillating turbine cascade and a two-blade-row transonic compressor. The vibration of the blade of the first case is driven by a motor while the excitation force of the second case comes from blade row interaction. The results show that the time collocation method has a faster convergence rate and is more stable than the harmonic balance method, especially for cases with a large maximum grid reduced frequency. More importantly, the time collocation method is capable of accurately predicting aeroelastic performance of turbomachinery blades.
基金The authors are grateful to Weifang Science and Technology Development Plan Project(2023ZJ1166)for supporting this work.
文摘Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure.
文摘Revealing the combined influence of interfacial damage and nonlinear factors on the forced vibration is significant for the stability design of fluid-conveying pipes, which are usually assembled in aircraft. The nonlinear forced resonance of fluid-conveying layered pipes with a weak interface and a movable boundary under the external excitation is studied. The pipe is simply supported at both ends, with one end subject to a viscoelastic boundary constraint described by KelvinVoigt model. The weak interface in the pipe is considered in the refined displacement field of the layered pipe employing the interfacial cohesive law. The governing equations are derived by Hamilton's variational principle. Geometric nonlinearities including nonlinear curvature, longitudinal inertia nonlinearity and nonlinear constraint force are comprehensively considered during the theoretical derivation. Amplitude-frequency bifurcation diagrams are obtained utilizing a perturbation-Incremental Harmonic Balance Method(IHBM). Results show that interfacial damage and viscoelastic constraints from boundary and foundation have an important influence on the linear and nonlinear dynamic behavior of the system.
基金supported by the Ignite National Technology fund,under National Grassroots Initiatives Program of ICT R&D(NIGRI),Project ID.NGIRI-2024-23901 of 2024.
文摘This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources.The proposed active hybrid solar dryer features a drying cabinet,two Direct Current(DC)fans for forced convection,and a resistive heating element powered by a 180 W solar PV panel.An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance,poor weather conditions,or nighttime.Tomatoes,a delicate and in-demand crop,were selected for experimentation due to their high perishability.Three experiments were conducted on the same prototype:natural convection direct solar dryer(NCDSD),forced convection direct solar dryer(FCDSD),and forced convection hybrid solar dryer(FCHSD).Each experiment began with 0.2 kg of tomatoes at 94%moisture content,achieving significant reductions:28.57%with NCDSD,16.667%with FCDSD,and 16.667%with FCHSD.The observed drying rates varied:1.161 kg/h for NCDSD,2.062 kg/h for FCDSD,and 2.8642 kg/h for FCHSD.This study presents a comparative analysis of efficiency,drying rate,and cost-effectiveness,alongside the system’s economic and environmental feasibility.
文摘The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal counterparts,one gains insights into the system's response under new mathematical frameworks.This paper presents a novel method for converting standard continuous differential equations into their fractal equivalents.This conversion occurs after the nonlinear system is transformed into its linear equivalent.Numerical analyses show that there are several resonance sites in the fractal system,which differ from the one resonance point found in the continuous system.One important finding is that the fractal system loses some of its stabilizing power when decaying behavior is transformed into a diffuse pattern.Interestingly,a decrease in the fractal order in resonance settings shows a stabilizing impact,highlighting the dynamics'complexity inside fractal systems.This endeavor to convert to fractals is a revolutionary technique that is being employed for the first time.
基金National Key R&D Program of China(2022YFC2503200,2022YFC2503201)National Natural Science Foundation of China(52074012,52204191)+5 种基金Anhui Provincial Natural Science Foundation(2308085J19)University Distinguished Youth Foundation of Anhui Province(2022AH020057)Anhui Province University Discipline(Major)Top Talent Academic Support Project(gxbjZD2022017)Funding for academic research activities of reserve candidates for academic and technological leaders in Anhui Province(2022H301)Independent Research fund of Key Laboratory of Industrial Dust Prevention and Control&Occupational Health and Safety,Ministry of Education(Anhui University of Science and Technology)(EK20211004)Graduate Innovation Fund of Anhui University of Science and Technology(2023CX1003).
文摘In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar principles.Through the similar experiment and numerical simulation,the distribution of airflow field in the roadway and the spatial and temporal evolution of dust pollution under the conditions of forced ventilation were determined.The airflow field in the roadway can be divided into three zones:jet zone,vortex zone and reflux zone.The dust concentration gradually decreases from the head to the rear of the roadway.Under the forced ventilation conditions,there is a unilateral accumulation of dust,with higher dust concentrations away from the ducts.The position of the equipment has an interception effect on the dust.The maximum error between the test value and the simulation result is 12.9%,which verifies the accuracy of the experimental results.The research results can provide theoretical guidance for the application of dust removal technology in coal mine.
文摘Background Obesity is the most common metabolic disease in the world. However, the relationship between obesity and lung function is not fully understood. Although several longitudinal studies have shown that increases in body weight can lead to reductions in pulmonary function, whether this is the case with the Japanese population and whether high body mass index (BMI) status alone represents an appropriate predictor of obstructive lung dysfunction remains unclear.The purpose of present study was to estimate the effect of BMI on lung function measured by spirometry of Japanese patients in general clinics. We measured BMI and performed spirometry on screening patients who had consulted general clinics.Methods Subjects comprised 1231 patients ≥40 years of age (mean age (65.0±12.0) years, 525 men, 706 women) who had consulted clinics in Nagasaki Prefecture, Japan, for non-respiratory disease. BMI was calculated and lung function was measured by spirometry.Results BMI was found to be positively correlated with forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) in men and with maximum mid-expiratory flow (MMF) in all subjects. Following adjustment for relevant factors, a significant positive correlation between BMI and FEV1/FVC was identified for all subjects. Comparison between subjects with normal BMI (18.5-25.0) and higher BMI (25.1-30.0) also demonstrated that FEV1/FVC and percentage of predicted maximum mid-expiratory flow (%MMF) were significantly higher in the latter subjects.Conclusions In a population without marked respiratory disease, higher BMI subjects showed less obstructive pulmonary dysfunction compared to normal BMI subjects. High BMI status alone may be inappropriate as a predictor of obstructive lung dysfunction, particularly in populations with a low prevalence of obesity.
文摘This article is concerned with the oscillation of the forced second order differ- ential equation with mixed nonlinearities(a(t)(x'(t))γ)'+po(t)xγ(go(t))+n∑t=1pi(t)|x(gi(t))|αi sgn x(gi(t))=e(t),where γ is a quotient of odd positive integers αi〉0,i=1,2 ……n,a,e,and pi ∈ C([0,∞)R),a(t)〉0,gi:R→R are positive continuous functions on R with lim gi (t)=∞,i=0,1,……,n. Our results generalize and improve the results in a recent article by Sun and Wong[29].
基金jointly supported by the National Key R&D Programs of China(Grant No.2018YFC1507300)the National Natural Science Foundation of China(Grant No.41505086)。
文摘Using National Centers for Environmental Prediction reanalysis data for the period 28 June to 12 July during 2001 to2013,the secondary circulation(SC)associated with the mei-yu front was quantitatively diagnosed by numerically solving a primitive version of the Sawyer-Eliassen equation.Results demonstrate that a direct SC exists near the mei-yu front zone during mid-summer and the synoptic-scale geostrophic deformations are the main factors determining SC structures.About94%of the sinking strength and 61%of the ascending strength in the SC are induced by the geostrophic deformations.Other terms,such as diabatic heating,ageostrophic dynamical forcing,and frictional forcing,mainly influence the fine flow pattern of the SC.The forced SC produces a frontogenesis area tilting to the north with altitude.Further diagnosis clarifies the positive feedback involving the geostrophic shear forcing and vorticity frontogenesis in the upper-level mei-yu front zone.Furthermore,statistical results indicate that all 34 deep convection cases that occurred in the warm region of the meiyu front over the period 2004-2013 experienced high-level frontogenesis associated with along-jet cold advection.The cyclonic shear forcing"moved"the monsoon SC’s subsidence branch to the warm side of the mei-yu front and caused the subsidence branch to extend downwards to the lower troposphere,conducive to the initiation of deep convection in the warm region of the mei-yu front.
基金co-supported by the National Natural Science Foundation of China(No.51975472)the Fundamental Scientific Research,China(No.JCKY2021205B110).
文摘In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on composite holes is promoted,in view of non-uniform extrusion caused by forced installation.At first,non-uniform extrusion of the hole edge caused by forced installation is analyzed.According to the contact state,expression of hole deformation is given.Then,based on Hertz theory,the maximum extrusion load is obtained with help of deformation expression.By constructing an elastic foundation beam model,3D stress distributed on a hole could be analyzed according to the extrusion load.Then,stress distribution predicted by the above analytical method is compared with that provided by FE considering composite damage.Finally,a forced installation experiment is carried out to analyze the damage distribution of the joint.Results show that a central-symmetrically distributed stress is introduced by the hole-location error.With an increment of the error,strength of composite decreases due to extrusion damage.Therefore,stress presents a concave distribution on the hole.As the hole-location error exceeding 3%,stress decreases gradually due to failure of composite.Damage of holes does not exhibit a centrosymmetric distribution.Serious damage is mainly distributed on the entrance of the hole at the lower sheet.
文摘An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.
文摘二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提升;二语写作研究领域暂未形成明显的核心作者和机构的合作网络;研究主题主要聚焦二语写作教学方法的多元化、二语写作反馈的多焦点、二语写作评估与测试的科学化,以及学习者个体差异的多维影响等方面。基于此,提出未来该领域发展需加强学者、机构之间的相互合作;关注个体学习者写作过程的认知特征与情感因素,尤其重视青少年二语学习过程的研究;扩大二语写作纵向研究规模,推动研究的深入发展。
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R229), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia。
文摘The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other associated equations are widely acknowledged for their broad applicability and potential for simulating a wide range of nonlinear phenomena in fluid physics, plasma physics, and various scientific domains. Consequently, the main goal of this study is to use the Yang homotopy perturbation method and the Yang transform decomposition method, along with the Caputo operator for analyzing the FF-KdV equation. The derived approximations are numerically examined and discussed. Our study will show that the two suggested methods are helpful, easy to use, and essential for looking at different nonlinear models that affect complex processes.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,grant No(44-PRFA-P-107).
文摘This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11932019,12388101,and 12102426).
文摘In this letter,the motion of small gas bubbles within sessile water drops on a vibrating substrate is investigatednumerically using a two-phase diffuse interface method.Depending on the amplitude of the plate vibration,themotion of the gas bubbles falls into three distinct regimes:oscillating within the drop,sticking to the substrate,orescaping from the drop.In particular,the motion of oscillating bubbles follows a harmonic function,and is foundto be closely related to a combined effect of the deformation of the sessile drop and the vibration of the plate.Tointerpret the underlying mechanism,we analyze the dominant forces acting on the bubbles in the non-inertialframework fixed to the plate,and take account of the periodic deformation of the drop,which effectively inducesflow acceleration inside the drop.As a result,we establish a theoretical model to predict the bubble motion,andcorrelate the amplitude and phase difference of the bubble with the Bond and Strouhal numbers.The theoreticalprediction agrees with our numerical results.These findings and theoretical analysis provide new insights intocontrolling bubble motion in sessile drops.
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
文摘Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.