This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stre...This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.展开更多
This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear ...This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.展开更多
By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean ...By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand.展开更多
By using the theories on Stokes multicolored water waves and taking the two- layer ocean as a basic model of stratified ocean, the paper analyzes the problems related to the effects of the nonlinear water wave on offs...By using the theories on Stokes multicolored water waves and taking the two- layer ocean as a basic model of stratified ocean, the paper analyzes the problems related to the effects of the nonlinear water wave on offshore structures. A mathematical expression is presented to describe second order wave radiation conditions. Using integral principle, the analytical integral solutions are given to evaluate second order scattered wave loads on general vertical circular cylinders in the two-layer ocean, and the special recurrence formulas for infinite integrals over free and stratified surfaces are derived.展开更多
Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusin...Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory.展开更多
文摘This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.
文摘This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.
基金the National Natural Science Foundation of China (Nos. 50579006 and 50639010)
文摘By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand.
基金National Natural Science Foundation of China (19802023)
文摘By using the theories on Stokes multicolored water waves and taking the two- layer ocean as a basic model of stratified ocean, the paper analyzes the problems related to the effects of the nonlinear water wave on offshore structures. A mathematical expression is presented to describe second order wave radiation conditions. Using integral principle, the analytical integral solutions are given to evaluate second order scattered wave loads on general vertical circular cylinders in the two-layer ocean, and the special recurrence formulas for infinite integrals over free and stratified surfaces are derived.
基金the French Research Network Me Ge (Multiscale and Multiphysics Couplings in Geo-environmental Mechanics GDR CNRS 3176/2340, 2008e2015) for having supported this work
文摘Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory.