A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be appl...A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients.展开更多
The author employs the method of upper and lower solutions together with the monotone iterative technique to obtain the existence theorem of minimal and maximal solutions for a boundary value problem of second order i...The author employs the method of upper and lower solutions together with the monotone iterative technique to obtain the existence theorem of minimal and maximal solutions for a boundary value problem of second order impulsive differential equation.展开更多
基金This work is supported by the National Science Fund of Peop1e's Republic of China
文摘A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients.
基金This work is supported by the National Natural Sciences Foundation of China(10471040) the Sciences Foundation of Shanxi (2005Z010) the Major Subject Foundation of Shanxi (20055024).
文摘The author employs the method of upper and lower solutions together with the monotone iterative technique to obtain the existence theorem of minimal and maximal solutions for a boundary value problem of second order impulsive differential equation.