Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bu...Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.展开更多
The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex...The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.展开更多
In this theoretical study,we investigate the generation of second harmonics(SH)during the interaction of a laser beam with a metallic nanoparticle(MNP)trimer.Utilizing a classical electrodynamics framework,we explore ...In this theoretical study,we investigate the generation of second harmonics(SH)during the interaction of a laser beam with a metallic nanoparticle(MNP)trimer.Utilizing a classical electrodynamics framework,we explore the nonlinear interactions between the laser beam fields and nanoparticles(NPs),accounting for dipole-dipole interactions among the particles.Analytical expressions are derived to quantify the impact of these interactions on SH radiation power for two distinct polarizations of the laser beam.Our findings indicate that when the laser electric field is aligned parallel to the trimer's symmetry axis,there is a significant enhancement in SH radiation power compared to a single non-interacting NP,accompanied by a red-shift in the plasmon resonance peak.Conversely,when the laser electric field is perpendicular to the trimer axis,the SH radiation power from each NP decreases,and the plasmon resonance peak experiences a blue-shift.Additionally,we examine the influence of particle size and interparticle separation on SH generation.These results provide valuable insights into the role of interparticle interactions in enhancing nonlinear optical processes in NP assemblies,with potential implications for the design of nanophotonic devices.展开更多
The quantum metric manifested as the Riemannian metric in the parameter space of Bloch bands,characterizes the topology and geometry of quantum states.The second harmonic generation(SHG),as one of the fundamental nonl...The quantum metric manifested as the Riemannian metric in the parameter space of Bloch bands,characterizes the topology and geometry of quantum states.The second harmonic generation(SHG),as one of the fundamental nonlinear optical responses that links geometry of optical transitions to physical observables,despite being widely studied in various materials,its relation to quantum metric,especially in the dynamical regime,stays obscure.展开更多
Collagen characterization is crucial for disease diagnostics,prevention,and understanding,with growing focus on quantitative analysis at tissue and fibril levels.Numerous models have been developed to quantify structu...Collagen characterization is crucial for disease diagnostics,prevention,and understanding,with growing focus on quantitative analysis at tissue and fibril levels.Numerous models have been developed to quantify structural changes in collagen linked to various pathologies.However,many approaches remain limited to conceptual descriptions or rely on custom software,often requiring programming skills,which re-stricts their clinical application and potential impact.We introduce CollagenFitJ,a plugin for the open-source software platform ImageJ/FIJI,which represents a widely used microscopy image analysis tool.CollagenFitJ makes use of the cylindrical symmetry model for collagen to enable facile quantitative assessment of polarization-resolved second harmonic generation microscopy image stacks.The plugin’s main outputs are collagen structure-related maps(e.g.,orientation and anisotropy of collagen fibrils within the focal volume),which can be accompanied by distribution and randomness maps for a series of structure-related parameters.We describe and validate the use of CollagenFitJ on images acquired on rat-tail tendons,collagen capsules surrounding human thyroid nodules,and mouse colon tumors,using both scanning and widefield second harmonic generation microscopy datasets.The plugin was designed to be user-friendly,requiring little to no experience in image processing and coding to facilitate access for life scientists,medical staff,and microscopy practitioners with limited coding skills or time availability required for coding.展开更多
The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(U...The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films.展开更多
Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal str...Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes.Monolayer transition metal dichalcogenides,particularly tungsten disulfide(WS_(2)),exhibit strong second-order nonlinear responses,making them ideal candidates for nonlinear photonic applications.Herein,we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition(CVD)-grown monolayer WS_(2),enabling second harmonic generation.A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS_(2)film with photonic circuits.This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems.The demonstrated platform holds significant potential for advancing quantum networks,visible-light lasers,and integrated optical modulation/detection systems.展开更多
Second harmonic generation(SHG),a fundamental and widely-studied phenomenon in nonlinear optics,has attracted significant attention for its ability to convert fundamental frequencies into their second harmonics.While ...Second harmonic generation(SHG),a fundamental and widely-studied phenomenon in nonlinear optics,has attracted significant attention for its ability to convert fundamental frequencies into their second harmonics.While the dominant SHG research has been focused on the optical and infrared regimes,its investigation in the microwave range presents challenges due to the requirements of materials with higher nonlinear coefficients and high-power microwave sources.Here,we provide an overview of methods together with underlying mechanisms for SHG in microwave frequencies,and discuss prospects and insights into the future developments of SHG-based technologies.The discussions on both numerical analyses and experimental studies will offer guidance for further SHG research and communication advancements in microwave regime.展开更多
Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculatio...Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculations,we propose a novel tetrahedral phase of transition metal dichalcogenides(TMDs)and validate its structural feasibility in a family of compounds,i.e.,ZX_(2)(Z=Ti,Zr,Hf;X=S,Se,Te).Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible ZX_(2)monolayers are dynamically stable.All the ZX_(2)monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10^(2)pm/V.Strain engineering imposes a profound influence on the SHG response of ZX_(2)monolayers by reducing symmetry and modifying nonlinear susceptibility components.The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction.Intriguingly,strain-driven nonlinear optical switching effects are realized in the ZX_(2)monolayers,with a reversible switching of SHG component ordering under tensile and compressive strain.In such a case,the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain.Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG,paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.展开更多
When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent ex...When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent example.In this study,we use an 800-nm Ti:sapphire femtosecond laser beam to pump the surface of a periodically poled lithium niobate(PPLN)crystal thin-plate nonlinear grating.By rotating the crystal,we change the incidence angle and observe and measure the exit angle,polarization,and power of NRND spots on the other side of the crystal.The experiment shows that NRND characteristics are highly sensitive to the incidence angle of the pump laser beam,which are consistent with the theoretical prediction.We expect that this research will advance the understanding of nonlinear diffraction and provide valuable insights for nonlinear optical interaction in complicated geometric and physical configurations.展开更多
The heterostructures incorporated with two or more distinctive two-dimensional(2D)materials have attracted great attention be-cause they could give rise to enhanced prop-erty in comparison with their individual counte...The heterostructures incorporated with two or more distinctive two-dimensional(2D)materials have attracted great attention be-cause they could give rise to enhanced prop-erty in comparison with their individual counterparts.Here,a water-assisted two-step rapid physical vapor deposition(rPVD)method was explored and used to synthesize Bi_(2)Te_(3)-Sb_(2)Te_(3)lateral het-erostructures(LHS)successfully.The Bi_(2)Te_(3)-Sb_(2)Te_(3)LHS is in nearly uniform size,and grows along three particular orientations with the intersection angles of 120°.Inter-estingly,we found that the water molecules play a significant role in determining the growth orientation,namely whether it will grow along the vertical or lateral direction in 2D structure.Hence,a growth mechanism of LHS based on the water-assisted two-step rPVD was present,which can be used as a general strategy and extended to the growth of other 2D heterostruc-tures or homostructures,such as SnS-SnSe LHS and SnS-SnS lateral homostructures.Fur-thermore,the second-harmonic generation intensity of the Bi_(2)Te_(3)-Sb_(2)Te_(3)LHS is much stronger than that of the Bi_(2)Te_(3)/Sb_(2)Te_(3)vertical heterostructures(VHS).This work opens a new approach for the synthesis of water-assisted lateral 2D heterostructures or homostruc-tures and offers a new method to enhance the second-harmonic generation properties of topo-logical insulating materials.展开更多
Spatiotemporal optical vortices(STOVs)have attracted significant attention for their unique properties.Recently,the second harmonic generation(SHG)of STOV pulses has been experimentally demonstrated,but the phase sing...Spatiotemporal optical vortices(STOVs)have attracted significant attention for their unique properties.Recently,the second harmonic generation(SHG)of STOV pulses has been experimentally demonstrated,but the phase singularity dynamics during this process remain elusive.Here,we theoretically investigate the separation and tilting of the phase singularities in STOVs during the SHG.Using the nonlinear Maxwell equation,we show that singularity separation is governed by group velocity mismatch,with accurate predictions provided by a Simpson-type integral under weak spatiotemporal walk-off conditions.In addition,paraxial wave equation analysis reveals that propagation induces singularity tilting,driven by spatial phase shifts.Our results not only offer deeper insights into the spatiotemporal coupling induced by complex nonlinear interactions but also reveal the underlying physical mechanisms in frequency up-conversion of space–time light pulses.展开更多
A technique for analyzing the nonlinear generation of the cumulative second har-monics of generalized Lamb modes in a layered planar structure is developed. A theoretical model for nonlinear generalized Lamb mode prop...A technique for analyzing the nonlinear generation of the cumulative second har-monics of generalized Lamb modes in a layered planar structure is developed. A theoretical model for nonlinear generalized Lamb mode propagation in a layered planar structure has been established, based on a partial plane wave approach. The nonlinearity is treated as a second-order perturbation of the linear elastic response. This model reveals some interesting features of the physics of the cumulative second harmonic generation. Although Lamb mode propagation is dispersive in a layered structure, the results of this analysis show that the amplitudes of the second harmonics do accumulate with propagation distance under certain special conditions. On the basis of the boundary and initial conditions of excitation, the formal solution of the cumulative second harmonic has been derived. Using the formal solution, we have performed some numerical simulations and obtained the cumulative second harmonic field patterns, illus-trating the distortion effect along the propagation distance, as well as the dependence of the field patterns on the position of the excitation source.展开更多
A novel method for converting an array of out-of-phase lasers into one of in-phase lasers that can be tightly focused is presented.The method exploits second-harmonic generation and can be adapted for different laser ...A novel method for converting an array of out-of-phase lasers into one of in-phase lasers that can be tightly focused is presented.The method exploits second-harmonic generation and can be adapted for different laser arrays geometries.Experimental and calculated results,presented for negatively coupled lasers formed in a square,honeycomb,and triangular geometries are in good agreement.展开更多
Directed self-assembly has been used to create micro-nano scale patterns,including chiral periodic structures of organic molecules,for potential applications in optics,photonics,metamaterials,and medical and sensing t...Directed self-assembly has been used to create micro-nano scale patterns,including chiral periodic structures of organic molecules,for potential applications in optics,photonics,metamaterials,and medical and sensing technologies.This study presents a straightforward approach for fabricating large-scale chiral grating porphyrin assemblies through template-assisted techniques.The solution of tetrakis(4-sulfonatophenyl)porphyrin(TPPS)was induced by chiral amino acids(L/D-arginine and L/D-serine)to selfassemble into highly ordered chiral grating structures with the assistance of sodium dodecyl sulfate(SDS).The structures show precise line widths(5.5μm)and gaps(18μm).Using in situ optical microscopy and second harmonic generation(SHG)microscopy,the chiral characteristics and dynamic evolution of the template-assisted self-assembly are investigated.It is found that the chirality of amino acids induced TPPS self-assembled into chiral structures and the liquid contraction interface significantly enhanced the chirality of the assemblies.This study is significant for understanding the mechanism of chiral evolution and designing novel micro-nano materials with predetermined chiral properties.展开更多
Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both t...Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both the polarization state of the fundamental and harmonic beams,thereby affecting the accuracy of the obtained second-order nonlinear susceptibility.Here,we propose a data correction method to solve this problem to obtain accurate secondorder nonlinear susceptibility.The feasibility and generality of the method are demonstrated through theoretical and experimental validation.展开更多
Two alkali-metal sulfamates nonlinear optical(NLO)crystals,Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3)),have been obtained through the facile evaporation method.Li(NH_(2)SO_(3))crystallizes in the polar space group Pca2_(1)(N...Two alkali-metal sulfamates nonlinear optical(NLO)crystals,Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3)),have been obtained through the facile evaporation method.Li(NH_(2)SO_(3))crystallizes in the polar space group Pca2_(1)(No.29).The structure of Li(NH_(2)SO_(3))can be described as a 3D network formed by[LiO_(4)]^(7-)polyhedral connecting with NH_(2)SO_(3)^(-)tetrahedra through corner-sharing.Na(NH_(2)SO_(3))crystallizes in the polar space group P2_(1)2_(1)2_(1)(No.19).The structure of Na(NH_(2)SO_(3))can be described as a 3D network formed by distorted[NaO_(6)]^(11-)octahedral connecting with NH_(2)SO_(3)^(-)tetrahedra through corner-sharing.The UV-Vis-near-infrared spectra demonstrate that Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3))possessed large optical band gaps of 5.25 and 4.81 eV,respectively.Powder second-harmonic generation(SHG)measurements demonstrate that the SHG intensity of Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3))were 0.32 times and 0.31 times that of KH_(2)PO_(4),respectively.First-principles calculations confirm the nonlinear optical performance mainly derived from the synergistic effect of amino sulfonate anions and alkali metal oxide anionic polyhedra.CCDC:2339109,Li(NH_(2)SO_(3));2339110,Na(NH_(2)SO_(3)).展开更多
The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of aco...The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.展开更多
Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is d...Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).展开更多
The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are p...The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.展开更多
基金supported by the Science and Technology Project of Guangdong Province,China(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.12434016)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFA1406900)the Fund of the National Postdoctoral Researcher Program(Grant No.GZB20240785).
文摘Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.
基金supported by the National Nat-ural Science Foundation of China(Nos.12192251,12174185,92163216,and 62288101).
文摘The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.
文摘In this theoretical study,we investigate the generation of second harmonics(SH)during the interaction of a laser beam with a metallic nanoparticle(MNP)trimer.Utilizing a classical electrodynamics framework,we explore the nonlinear interactions between the laser beam fields and nanoparticles(NPs),accounting for dipole-dipole interactions among the particles.Analytical expressions are derived to quantify the impact of these interactions on SH radiation power for two distinct polarizations of the laser beam.Our findings indicate that when the laser electric field is aligned parallel to the trimer's symmetry axis,there is a significant enhancement in SH radiation power compared to a single non-interacting NP,accompanied by a red-shift in the plasmon resonance peak.Conversely,when the laser electric field is perpendicular to the trimer axis,the SH radiation power from each NP decreases,and the plasmon resonance peak experiences a blue-shift.Additionally,we examine the influence of particle size and interparticle separation on SH generation.These results provide valuable insights into the role of interparticle interactions in enhancing nonlinear optical processes in NP assemblies,with potential implications for the design of nanophotonic devices.
基金supported by National Natural Science Foundation of China(Grant Nos.12025407,12474246,and 12450401)the National Key Research and Development Program of China(Grant No.2021YFA1400201)the Chinese Academy of Sciences(Grant Nos.YSBR-047 and XDB33030100)。
文摘The quantum metric manifested as the Riemannian metric in the parameter space of Bloch bands,characterizes the topology and geometry of quantum states.The second harmonic generation(SHG),as one of the fundamental nonlinear optical responses that links geometry of optical transitions to physical observables,despite being widely studied in various materials,its relation to quantum metric,especially in the dynamical regime,stays obscure.
基金supported by the Ministry of Research,Innovation and Digitalization,CNCS-UEFISCDI[Grant Nos.RO-NO-2019-0601(MEDYCONAI),PN-III-P4-PCE-2021-0444(RESONANO)]PN-IV-P1-PCE-2023-1137+2 种基金supported in part by IN2SIGHT,European Union’s Horizon 2020(GA.no.964481)by the Research Council of Lithuania(LMTLTAgreement No.P-MIP-23-237).
文摘Collagen characterization is crucial for disease diagnostics,prevention,and understanding,with growing focus on quantitative analysis at tissue and fibril levels.Numerous models have been developed to quantify structural changes in collagen linked to various pathologies.However,many approaches remain limited to conceptual descriptions or rely on custom software,often requiring programming skills,which re-stricts their clinical application and potential impact.We introduce CollagenFitJ,a plugin for the open-source software platform ImageJ/FIJI,which represents a widely used microscopy image analysis tool.CollagenFitJ makes use of the cylindrical symmetry model for collagen to enable facile quantitative assessment of polarization-resolved second harmonic generation microscopy image stacks.The plugin’s main outputs are collagen structure-related maps(e.g.,orientation and anisotropy of collagen fibrils within the focal volume),which can be accompanied by distribution and randomness maps for a series of structure-related parameters.We describe and validate the use of CollagenFitJ on images acquired on rat-tail tendons,collagen capsules surrounding human thyroid nodules,and mouse colon tumors,using both scanning and widefield second harmonic generation microscopy datasets.The plugin was designed to be user-friendly,requiring little to no experience in image processing and coding to facilitate access for life scientists,medical staff,and microscopy practitioners with limited coding skills or time availability required for coding.
基金supported by the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(Project No.241827012)the National Natural Science Foundation of China(Grant Nos.U22A6005 and 62271450)+1 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1301502,2024YFA1408701,and 2024YFA1408403)the Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films.
基金Project supported by the National Innovative Training Program for College Students of China(Grant No.2023069)the University Research and Innovation Project of the National University of Defense Technology。
文摘Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes.Monolayer transition metal dichalcogenides,particularly tungsten disulfide(WS_(2)),exhibit strong second-order nonlinear responses,making them ideal candidates for nonlinear photonic applications.Herein,we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition(CVD)-grown monolayer WS_(2),enabling second harmonic generation.A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS_(2)film with photonic circuits.This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems.The demonstrated platform holds significant potential for advancing quantum networks,visible-light lasers,and integrated optical modulation/detection systems.
基金supported by the National Natural Science Foun-dation of China(No.12274339).
文摘Second harmonic generation(SHG),a fundamental and widely-studied phenomenon in nonlinear optics,has attracted significant attention for its ability to convert fundamental frequencies into their second harmonics.While the dominant SHG research has been focused on the optical and infrared regimes,its investigation in the microwave range presents challenges due to the requirements of materials with higher nonlinear coefficients and high-power microwave sources.Here,we provide an overview of methods together with underlying mechanisms for SHG in microwave frequencies,and discuss prospects and insights into the future developments of SHG-based technologies.The discussions on both numerical analyses and experimental studies will offer guidance for further SHG research and communication advancements in microwave regime.
基金supported by the National Natural Science Foundation of China(Grant Nos.12304220,12174157,12074150,and 12374174)the Natural Science Foundation of Jiangsu Province(Grant No.BK20230518)+2 种基金the China Postdoctoral Science Foundation(Grant No.2023M731383)the College Student Innovation Project(Grant No.202410299946X)the Scientific Research Project of Jiangsu University(Grant No.22A397).
文摘Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculations,we propose a novel tetrahedral phase of transition metal dichalcogenides(TMDs)and validate its structural feasibility in a family of compounds,i.e.,ZX_(2)(Z=Ti,Zr,Hf;X=S,Se,Te).Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible ZX_(2)monolayers are dynamically stable.All the ZX_(2)monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10^(2)pm/V.Strain engineering imposes a profound influence on the SHG response of ZX_(2)monolayers by reducing symmetry and modifying nonlinear susceptibility components.The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction.Intriguingly,strain-driven nonlinear optical switching effects are realized in the ZX_(2)monolayers,with a reversible switching of SHG component ordering under tensile and compressive strain.In such a case,the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain.Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG,paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.
基金supported by the Science and Technology Project of Guangdong Province,China(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.12434016)the National Funded Postdoctoral Researcher Program(Grant No.GZB20240785).
文摘When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent example.In this study,we use an 800-nm Ti:sapphire femtosecond laser beam to pump the surface of a periodically poled lithium niobate(PPLN)crystal thin-plate nonlinear grating.By rotating the crystal,we change the incidence angle and observe and measure the exit angle,polarization,and power of NRND spots on the other side of the crystal.The experiment shows that NRND characteristics are highly sensitive to the incidence angle of the pump laser beam,which are consistent with the theoretical prediction.We expect that this research will advance the understanding of nonlinear diffraction and provide valuable insights for nonlinear optical interaction in complicated geometric and physical configurations.
基金supported by the Natural Science Foundation of Fujian Province of China(2022J01646)。
文摘The heterostructures incorporated with two or more distinctive two-dimensional(2D)materials have attracted great attention be-cause they could give rise to enhanced prop-erty in comparison with their individual counterparts.Here,a water-assisted two-step rapid physical vapor deposition(rPVD)method was explored and used to synthesize Bi_(2)Te_(3)-Sb_(2)Te_(3)lateral het-erostructures(LHS)successfully.The Bi_(2)Te_(3)-Sb_(2)Te_(3)LHS is in nearly uniform size,and grows along three particular orientations with the intersection angles of 120°.Inter-estingly,we found that the water molecules play a significant role in determining the growth orientation,namely whether it will grow along the vertical or lateral direction in 2D structure.Hence,a growth mechanism of LHS based on the water-assisted two-step rPVD was present,which can be used as a general strategy and extended to the growth of other 2D heterostruc-tures or homostructures,such as SnS-SnSe LHS and SnS-SnS lateral homostructures.Fur-thermore,the second-harmonic generation intensity of the Bi_(2)Te_(3)-Sb_(2)Te_(3)LHS is much stronger than that of the Bi_(2)Te_(3)/Sb_(2)Te_(3)vertical heterostructures(VHS).This work opens a new approach for the synthesis of water-assisted lateral 2D heterostructures or homostruc-tures and offers a new method to enhance the second-harmonic generation properties of topo-logical insulating materials.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFB3611000 and 2022YFA1405000)the National Natural Science Foundation of China(Grant Nos.62227821 and 62305157).
文摘Spatiotemporal optical vortices(STOVs)have attracted significant attention for their unique properties.Recently,the second harmonic generation(SHG)of STOV pulses has been experimentally demonstrated,but the phase singularity dynamics during this process remain elusive.Here,we theoretically investigate the separation and tilting of the phase singularities in STOVs during the SHG.Using the nonlinear Maxwell equation,we show that singularity separation is governed by group velocity mismatch,with accurate predictions provided by a Simpson-type integral under weak spatiotemporal walk-off conditions.In addition,paraxial wave equation analysis reveals that propagation induces singularity tilting,driven by spatial phase shifts.Our results not only offer deeper insights into the spatiotemporal coupling induced by complex nonlinear interactions but also reveal the underlying physical mechanisms in frequency up-conversion of space–time light pulses.
基金the National Natural Science Foundation of China(No.10004016).
文摘A technique for analyzing the nonlinear generation of the cumulative second har-monics of generalized Lamb modes in a layered planar structure is developed. A theoretical model for nonlinear generalized Lamb mode propagation in a layered planar structure has been established, based on a partial plane wave approach. The nonlinearity is treated as a second-order perturbation of the linear elastic response. This model reveals some interesting features of the physics of the cumulative second harmonic generation. Although Lamb mode propagation is dispersive in a layered structure, the results of this analysis show that the amplitudes of the second harmonics do accumulate with propagation distance under certain special conditions. On the basis of the boundary and initial conditions of excitation, the formal solution of the cumulative second harmonic has been derived. Using the formal solution, we have performed some numerical simulations and obtained the cumulative second harmonic field patterns, illus-trating the distortion effect along the propagation distance, as well as the dependence of the field patterns on the position of the excitation source.
基金supported in part by the Minerva FoundationIsrael Science Foundation (ISF) Bikura foundation
文摘A novel method for converting an array of out-of-phase lasers into one of in-phase lasers that can be tightly focused is presented.The method exploits second-harmonic generation and can be adapted for different laser arrays geometries.Experimental and calculated results,presented for negatively coupled lasers formed in a square,honeycomb,and triangular geometries are in good agreement.
基金funding from the National Natural Science Foundation of China(NSFC,Nos.22173112 and 91856121)Chinese Academy of Sciences for support(No.YJKYYQ20180014)。
文摘Directed self-assembly has been used to create micro-nano scale patterns,including chiral periodic structures of organic molecules,for potential applications in optics,photonics,metamaterials,and medical and sensing technologies.This study presents a straightforward approach for fabricating large-scale chiral grating porphyrin assemblies through template-assisted techniques.The solution of tetrakis(4-sulfonatophenyl)porphyrin(TPPS)was induced by chiral amino acids(L/D-arginine and L/D-serine)to selfassemble into highly ordered chiral grating structures with the assistance of sodium dodecyl sulfate(SDS).The structures show precise line widths(5.5μm)and gaps(18μm).Using in situ optical microscopy and second harmonic generation(SHG)microscopy,the chiral characteristics and dynamic evolution of the template-assisted self-assembly are investigated.It is found that the chirality of amino acids induced TPPS self-assembled into chiral structures and the liquid contraction interface significantly enhanced the chirality of the assemblies.This study is significant for understanding the mechanism of chiral evolution and designing novel micro-nano materials with predetermined chiral properties.
基金This work was supported by the National Natural Science Foundation of China(No.U2230203)the Fundamental Research Funds for the Central Universities.
文摘Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both the polarization state of the fundamental and harmonic beams,thereby affecting the accuracy of the obtained second-order nonlinear susceptibility.Here,we propose a data correction method to solve this problem to obtain accurate secondorder nonlinear susceptibility.The feasibility and generality of the method are demonstrated through theoretical and experimental validation.
文摘Two alkali-metal sulfamates nonlinear optical(NLO)crystals,Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3)),have been obtained through the facile evaporation method.Li(NH_(2)SO_(3))crystallizes in the polar space group Pca2_(1)(No.29).The structure of Li(NH_(2)SO_(3))can be described as a 3D network formed by[LiO_(4)]^(7-)polyhedral connecting with NH_(2)SO_(3)^(-)tetrahedra through corner-sharing.Na(NH_(2)SO_(3))crystallizes in the polar space group P2_(1)2_(1)2_(1)(No.19).The structure of Na(NH_(2)SO_(3))can be described as a 3D network formed by distorted[NaO_(6)]^(11-)octahedral connecting with NH_(2)SO_(3)^(-)tetrahedra through corner-sharing.The UV-Vis-near-infrared spectra demonstrate that Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3))possessed large optical band gaps of 5.25 and 4.81 eV,respectively.Powder second-harmonic generation(SHG)measurements demonstrate that the SHG intensity of Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3))were 0.32 times and 0.31 times that of KH_(2)PO_(4),respectively.First-principles calculations confirm the nonlinear optical performance mainly derived from the synergistic effect of amino sulfonate anions and alkali metal oxide anionic polyhedra.CCDC:2339109,Li(NH_(2)SO_(3));2339110,Na(NH_(2)SO_(3)).
基金Project supported by the Shanghai Leading Academic Discipline Project, China (Grant No B503)
文摘The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.
基金National Key Research and Development Program of China(No.2021YFE0114700)National Natural Science Foundation of China(Nos.52130701 and 51977096)。
文摘Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).
基金Supported by the National Natural Science Foundation of China under Grant Nos 51325504,11474093,11622430 and 11474361the National Key Research and Development Program of China(2016YFC0801903-02)the Fundamental Research Funds for the Central Universities
文摘The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.