The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-tim...The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-time query, reservation, and cancellation of seat resources, providing users with great convenience. With a simple operation, users can know the availability of seats in the library in real time and reserve them according to their needs. At the same time, the system also provides rich management functions, enabling administrators to easily configure and manage seat resources. The addition, deletion, modification and review of users, the generation of seats, the viewing of user usage records, and the addition or deletion of points for users’ usage can also be carried out. This not only improves the management efficiency, but also provides more scientific and accurate data support for the management of the library. The system not only optimizes the user experience, but also promotes the scientific management and efficient utilization of library resources, and provides strong support for the modern services of the library.展开更多
A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding ...A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding of multiple parts on a single machine in automobile factories. The system incorporates an automatic recognition system for different workpiece materials using the added machine fixture,visual detection system for nuts and bolts,and secondary graphical confirmation to ensure the correctness of specification calling. This system achieves reliable,fully automatic selection of welding specifications in resistance welding equipment and has shown significant effects in improving welding quality for massproduced workpieces,while solving the problem of specification calling errors that can occur with traditional methods involving process charts and code adjustments. This system is particularly suitable for promoting applications in manual welding of multiple parts on a single machine in automobile factories,ensuring correct specification calling and welding quality.展开更多
A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pr...A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body,a cooling structure is set on the valve seat.This can significantly reduce the temperature of the valve body and valve seat.The effects of its structure on the cooling characteristics and stress of the valve seat are studied,and six main parameters that can completely describe the geometry of the cooling structure are proposed.The central composite design method is used to select sample points,and the multi-objective genetic algorithm(MOGA)method is used for optimal structural design.A modification method according to the main parameters for the valve seat is proposed.The results show that the cooling structure weakens the pressure-bearing capability of the valve seat.Among the six main parameters of the valve seat,the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat.An optimum design value is proposed.This work can provide a reference for the design of high-temperature and high-pressure valves.展开更多
In this study,it is aimed to develop a generic model which calculates the trajectory of the ejection seat from the jet aircraft,by taking into account the parameters that will affect the seat movement such as the seat...In this study,it is aimed to develop a generic model which calculates the trajectory of the ejection seat from the jet aircraft,by taking into account the parameters that will affect the seat movement such as the seat’s launch speed,ejection direction,ejection angle,altitude of the aircraft,distance/height from the aircraft rudder and canopy,pilot and ejection seat weight.With the model algorithm proposed,the ejection seat trajectory model was developed on MATLAB.The ejection seat trajectory model is based on point mass trajectory mathematical model.In this study,an analytical study of the problem has been made for modeling the flight trajectory of the ejection seat after it has been ejected.Past studies were used as a basis for validation and simulation.By writing a generic MATLAB code,a user interface was developed and presented to the user as a module.This generic code that has been developed could be used for simulations by users in the future by revising it in accordance with their own job descriptions.展开更多
Rationale:Melioidosis is a serious opportunistic infection caused by Burkholderia(B.)pseudomallei,primarily affecting immunocompromised individuals,particularly in endemic regions.Timely diagnosis and appropriate trea...Rationale:Melioidosis is a serious opportunistic infection caused by Burkholderia(B.)pseudomallei,primarily affecting immunocompromised individuals,particularly in endemic regions.Timely diagnosis and appropriate treatment are crucial to prevent fatal outcomes.Patient concerns:Case 1 was a 34-year-old male kidney transplant recipient who presented with a 15-day history of intermittent fever,accompanied by liver and spleen abscesses.Case 2 was a 37-year-old female kidney transplant recipient who presented with acute febrile illness and developed leucopenia.Blood cultures for both patients grew B.pseudomallei.Diagnosis:Both patients were diagnosed with melioidosis caused by B.pseudomallei,with the diagnosis confirmed through pus culture from the liver abscess in Case 1 and blood culture in Case 2.Interventions:Both patients were treated with an intensive regimen of meropenem(renal-adjusted doses),followed by a 3-month course of oral cotrimoxazole for eradication therapy.Outcomes:Case 1 experienced resolution of liver and spleen abscesses after 3 months of treatment and continued to recover well.In Case 2,blood cultures became sterile after 4 weeks,with no further complications observed.Lessons:Melioidosis should be suspected in immunocompromised patients,especially kidney transplant recipients,who present with unexplained fever and sepsis-like symptoms.Early diagnosis through aspiration of abscesses and prompt treatment are critical for preventing relapses and improving patient outcomes.展开更多
Typically,seat or floor acceleration is used to evaluate the ride comfort of a high-speed train.However,the dynamic performance of the human body significantly differs from that of the floor.Therefore,using the car bo...Typically,seat or floor acceleration is used to evaluate the ride comfort of a high-speed train.However,the dynamic performance of the human body significantly differs from that of the floor.Therefore,using the car body floor and seat accelerations to calculate the ride comfort index of a high-speed train may not reflect the true feelings of passengers.In this study,a 3D human-seat-vehicle-track coupling model was established to investigate the ride comfort of highspeed train passengers.The seated human model,which considers the longitudinal,lateral,vertical,pitching,yawing,and rolling motions,comprises the head,upper torso,lower torso,pelvis,thighs,and shanks.The model parameters were determined using multi-axis excitation measurement data based on a genetic algorithm.Subsequently,the applicability of the small-angle assumption and natural modes of the human model is analyzed.Using the coupling system model,the vibration characteristics of the human-seat interaction surface were analyzed.The ride comfort of the high-speed train and human body dynamic performance were analyzed under normal conditions,track geometric irregularities and train meeting conditions.The results showed that the passenger seats in the front and rear rows adjacent to the window had a higher acceleration value than the others.The human backrest and seat pad connection points have higher vibration amplitudes than the car body floor in the human-sensitive frequency range,indicating that using the acceleration values on the floor may underestimate the discomfort of passengers.The ride comfort of high-speed trains diminishes in the presence of track geometric irregularities and when trains pass each other.When the excitation frequency of track geometry irregularities approached the natural frequency of the human-seat-vehicle system,ride comfort in high-speed trains decreased significantly.Moreover,using seat acceleration to evaluate passenger ride comfort overlooks the vibration characteristics of the human body.The transient aerodynamic force generated when the train meets can cause a larger car body roll and lateral motion at 2 Hz,which,in turn,decreases the passenger ride comfort.This study presents a detailed human-seat-vehicle-track coupling system that can reflect a passenger’s dynamic performance under complex operating conditions.展开更多
A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorize...A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.展开更多
Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whol...Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whole.In order to further improve ride comfort,the seat suspension is regarded as the fifth suspension of the cab,a new idea of "Five-suspensions" is proposed.Based on this idea,a 4 degree-of-freedom driver-seat-cab coupled system model is presented.Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output,the simulation model is built.Taking optimal ride comfort as target,a new method of damping collaborative optimization for Five-suspensions is proposed.With a practical example of seat and cab system,the damping parameters are optimized and validated by simulation and bench test.The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s~2 and 0.39 m/s~2,respectively,with a decrease by 22.0%,which proves the model and method proposed are correct and reliable.The idea of "Five-suspensions" and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions.展开更多
Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sle...Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them,reducing accidents.This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle.Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network(CNN)any changes by focusing on the eyes and mouth zone,precision is achieved.One of the tasks that must be performed in the transit system is seat belt detection to lessen accidents caused by sudden stops or high-speed collisions with other cars.A method is put forth to use convolution neural networks to determine whether the motorist is wearing a seat belt when a driver is sleepy,preoccupied,or not wearing their seat belt,this system alerts them with an alarm,and if they don’t wake up by a predetermined time of 3 s threshold,an automatic message is sent to law enforcement agencies.The suggested CNN-based model exhibits greater accuracy with 97%.It can be utilized to develop a system that detects driver attention or sleeps in real-time.展开更多
To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffn...To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.展开更多
IoT can aid alliance of communication, monitor and information processing across various transportation systems. The authors have developed a real time public bus management system based on IoT and android application...IoT can aid alliance of communication, monitor and information processing across various transportation systems. The authors have developed a real time public bus management system based on IoT and android application. The authors have used GPS (Global Positioning System) to track the nearest location of the bus and police station;IR sensor is used for checking seat availability. The authors also use a Panic Alert Button on every seat of the bus to reduce women harassment. With the press of the panic alert button, the notification sends to the owner and the nearest police station with the current location of the bus.展开更多
Today,on the one hand,while the traditional design process continues,on the other hand,digital design systems along with advances in computer technologies continue to present designers with new and effective ideas.Par...Today,on the one hand,while the traditional design process continues,on the other hand,digital design systems along with advances in computer technologies continue to present designers with new and effective ideas.Parametric design is preferred by designers for its relationality,contributing toward versatility,ensuring flexibility,simplifying diversification,and for presenting programmatic solutions.As is seen in a number of areas,we have also begun to encounter the use of parametric designs produced with parametric design systems and wooden materials in urban landscaping.The purpose of this study is to examine the upper cover application and seating elements generated by taking advantage of parametric designs from wooden construction materials in urban landscaping areas,and examine the impact of wooden material characteristics while generating behavior and parametric structures of technologies.After researching parametric design and wooden material concepts,an attempt was made to reach conclusions through analyses conducted by examining parametric wooden designed pavilion and seating element specimens applied in various regions of the world.展开更多
To improve the passive safety of high-speed trains,it is very important to understand the mechanism of head injury in high-speed train collisions.In this study,the head injury mechanisms of occupants in high-speed tra...To improve the passive safety of high-speed trains,it is very important to understand the mechanism of head injury in high-speed train collisions.In this study,the head injury mechanisms of occupants in high-speed train rear-end collisions were investigated based on the occupant-seat coupling model,which included a dummy representing the Chinese 50th percentile adult male.The typical injury responses in terms of skull fractures,brain contusions,and diffuse axonal injury(DAI)were analyzed.Meanwhile,the influences of collision speed and seat parameters on head injury response were examined.The simulation results indicate that the skull fractures primarily occur at the skull base region due to excessive neck extension,while the brain contusions and DAI result from the relative displacement of different brain regions.The increase in collision speed will promote the probability of skull fracture,brain contusion,and DAI.Seat design modifications,such as reduced seat spacing,increased seat backrest angles,and selecting the appropriate cushion angle(76°)and friction coefficient(0.15),can effectively mitigate probably occupant's head injury.展开更多
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
Objective:To evaluate the intervention effects of seated Baduanjin exercise on patients undergoing maintenance hemodialysis(MHD).Methods:A total of 108 MHD patients admitted between July 2022 and July 2023 were select...Objective:To evaluate the intervention effects of seated Baduanjin exercise on patients undergoing maintenance hemodialysis(MHD).Methods:A total of 108 MHD patients admitted between July 2022 and July 2023 were selected.They were randomly assigned into two groups:the experimental group,with 55 patients,who received seated Baduanjin exercise combined with leg exercises during dialysis;and the control group,with 53 patients,who only performed leg exercises during dialysis.The psychological state,fatigue symptoms,quality of life,and sleep quality scores were compared between the two groups,and exercise endurance was recorded.Results:After the intervention,the psychological state scores in the experimental group were lower than those in the control group,the fatigue symptom scores were lower,the quality of life scores were higher,the sleep quality scores were lower,and the exercise endurance was higher(P<0.05).Conclusion:Seated Baduanjin exercise can improve the negative psychological state and fatigue symptoms of MHD patients,enhance their quality of life and sleep quality,and effectively increase their exercise endurance.展开更多
Seasonal adjustment has been widely used in statistic analyses.Nowadays,the research on seasonal adjustment methods mainly concentrates on X-11,X-12 etc in China,lacking the whole understanding of foreign seasonal adj...Seasonal adjustment has been widely used in statistic analyses.Nowadays,the research on seasonal adjustment methods mainly concentrates on X-11,X-12 etc in China,lacking the whole understanding of foreign seasonal adjustment methods,and the latest progress of seasonal adjustment methods has been less introduced.In this article,various seasonal adjustment methods were introduced,and a comparison of their characteristics and applications was made.It is helpful that statistical organizations can develop appropriate seasonal adjustment methods,concerning different kinds of data.展开更多
文摘The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-time query, reservation, and cancellation of seat resources, providing users with great convenience. With a simple operation, users can know the availability of seats in the library in real time and reserve them according to their needs. At the same time, the system also provides rich management functions, enabling administrators to easily configure and manage seat resources. The addition, deletion, modification and review of users, the generation of seats, the viewing of user usage records, and the addition or deletion of points for users’ usage can also be carried out. This not only improves the management efficiency, but also provides more scientific and accurate data support for the management of the library. The system not only optimizes the user experience, but also promotes the scientific management and efficient utilization of library resources, and provides strong support for the modern services of the library.
文摘A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding of multiple parts on a single machine in automobile factories. The system incorporates an automatic recognition system for different workpiece materials using the added machine fixture,visual detection system for nuts and bolts,and secondary graphical confirmation to ensure the correctness of specification calling. This system achieves reliable,fully automatic selection of welding specifications in resistance welding equipment and has shown significant effects in improving welding quality for massproduced workpieces,while solving the problem of specification calling errors that can occur with traditional methods involving process charts and code adjustments. This system is particularly suitable for promoting applications in manual welding of multiple parts on a single machine in automobile factories,ensuring correct specification calling and welding quality.
基金supported by the National Natural Science Foundation of China(No.52175067)the Zhejiang Key Research&Development Project(No.2021C01021)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY20E050016)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZC20241478)。
文摘A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body,a cooling structure is set on the valve seat.This can significantly reduce the temperature of the valve body and valve seat.The effects of its structure on the cooling characteristics and stress of the valve seat are studied,and six main parameters that can completely describe the geometry of the cooling structure are proposed.The central composite design method is used to select sample points,and the multi-objective genetic algorithm(MOGA)method is used for optimal structural design.A modification method according to the main parameters for the valve seat is proposed.The results show that the cooling structure weakens the pressure-bearing capability of the valve seat.Among the six main parameters of the valve seat,the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat.An optimum design value is proposed.This work can provide a reference for the design of high-temperature and high-pressure valves.
文摘In this study,it is aimed to develop a generic model which calculates the trajectory of the ejection seat from the jet aircraft,by taking into account the parameters that will affect the seat movement such as the seat’s launch speed,ejection direction,ejection angle,altitude of the aircraft,distance/height from the aircraft rudder and canopy,pilot and ejection seat weight.With the model algorithm proposed,the ejection seat trajectory model was developed on MATLAB.The ejection seat trajectory model is based on point mass trajectory mathematical model.In this study,an analytical study of the problem has been made for modeling the flight trajectory of the ejection seat after it has been ejected.Past studies were used as a basis for validation and simulation.By writing a generic MATLAB code,a user interface was developed and presented to the user as a module.This generic code that has been developed could be used for simulations by users in the future by revising it in accordance with their own job descriptions.
文摘Rationale:Melioidosis is a serious opportunistic infection caused by Burkholderia(B.)pseudomallei,primarily affecting immunocompromised individuals,particularly in endemic regions.Timely diagnosis and appropriate treatment are crucial to prevent fatal outcomes.Patient concerns:Case 1 was a 34-year-old male kidney transplant recipient who presented with a 15-day history of intermittent fever,accompanied by liver and spleen abscesses.Case 2 was a 37-year-old female kidney transplant recipient who presented with acute febrile illness and developed leucopenia.Blood cultures for both patients grew B.pseudomallei.Diagnosis:Both patients were diagnosed with melioidosis caused by B.pseudomallei,with the diagnosis confirmed through pus culture from the liver abscess in Case 1 and blood culture in Case 2.Interventions:Both patients were treated with an intensive regimen of meropenem(renal-adjusted doses),followed by a 3-month course of oral cotrimoxazole for eradication therapy.Outcomes:Case 1 experienced resolution of liver and spleen abscesses after 3 months of treatment and continued to recover well.In Case 2,blood cultures became sterile after 4 weeks,with no further complications observed.Lessons:Melioidosis should be suspected in immunocompromised patients,especially kidney transplant recipients,who present with unexplained fever and sepsis-like symptoms.Early diagnosis through aspiration of abscesses and prompt treatment are critical for preventing relapses and improving patient outcomes.
基金Supported by National Natural Science Foundation of China(Grant No.U1934203)Research and Development Project of Science and Technology of China Railway Corporation(Grant No.P2023T002)。
文摘Typically,seat or floor acceleration is used to evaluate the ride comfort of a high-speed train.However,the dynamic performance of the human body significantly differs from that of the floor.Therefore,using the car body floor and seat accelerations to calculate the ride comfort index of a high-speed train may not reflect the true feelings of passengers.In this study,a 3D human-seat-vehicle-track coupling model was established to investigate the ride comfort of highspeed train passengers.The seated human model,which considers the longitudinal,lateral,vertical,pitching,yawing,and rolling motions,comprises the head,upper torso,lower torso,pelvis,thighs,and shanks.The model parameters were determined using multi-axis excitation measurement data based on a genetic algorithm.Subsequently,the applicability of the small-angle assumption and natural modes of the human model is analyzed.Using the coupling system model,the vibration characteristics of the human-seat interaction surface were analyzed.The ride comfort of the high-speed train and human body dynamic performance were analyzed under normal conditions,track geometric irregularities and train meeting conditions.The results showed that the passenger seats in the front and rear rows adjacent to the window had a higher acceleration value than the others.The human backrest and seat pad connection points have higher vibration amplitudes than the car body floor in the human-sensitive frequency range,indicating that using the acceleration values on the floor may underestimate the discomfort of passengers.The ride comfort of high-speed trains diminishes in the presence of track geometric irregularities and when trains pass each other.When the excitation frequency of track geometry irregularities approached the natural frequency of the human-seat-vehicle system,ride comfort in high-speed trains decreased significantly.Moreover,using seat acceleration to evaluate passenger ride comfort overlooks the vibration characteristics of the human body.The transient aerodynamic force generated when the train meets can cause a larger car body roll and lateral motion at 2 Hz,which,in turn,decreases the passenger ride comfort.This study presents a detailed human-seat-vehicle-track coupling system that can reflect a passenger’s dynamic performance under complex operating conditions.
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2011-2012
文摘A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.
基金Supported by National Natural Science Foundation of China(Grant No.51575325)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2013EEM007)
文摘Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whole.In order to further improve ride comfort,the seat suspension is regarded as the fifth suspension of the cab,a new idea of "Five-suspensions" is proposed.Based on this idea,a 4 degree-of-freedom driver-seat-cab coupled system model is presented.Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output,the simulation model is built.Taking optimal ride comfort as target,a new method of damping collaborative optimization for Five-suspensions is proposed.With a practical example of seat and cab system,the damping parameters are optimized and validated by simulation and bench test.The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s~2 and 0.39 m/s~2,respectively,with a decrease by 22.0%,which proves the model and method proposed are correct and reliable.The idea of "Five-suspensions" and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through Project Number MoE-IF-UJ-22-4100409-1.
文摘Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them,reducing accidents.This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle.Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network(CNN)any changes by focusing on the eyes and mouth zone,precision is achieved.One of the tasks that must be performed in the transit system is seat belt detection to lessen accidents caused by sudden stops or high-speed collisions with other cars.A method is put forth to use convolution neural networks to determine whether the motorist is wearing a seat belt when a driver is sleepy,preoccupied,or not wearing their seat belt,this system alerts them with an alarm,and if they don’t wake up by a predetermined time of 3 s threshold,an automatic message is sent to law enforcement agencies.The suggested CNN-based model exhibits greater accuracy with 97%.It can be utilized to develop a system that detects driver attention or sleeps in real-time.
基金The National Natural Science Foundation of China(No.11902207,No.52072072)the Natural Science Foundation of Hebei Province(A2020210018)Higher Education Teaching Research Project(No.Y2020-15).
文摘To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.
文摘IoT can aid alliance of communication, monitor and information processing across various transportation systems. The authors have developed a real time public bus management system based on IoT and android application. The authors have used GPS (Global Positioning System) to track the nearest location of the bus and police station;IR sensor is used for checking seat availability. The authors also use a Panic Alert Button on every seat of the bus to reduce women harassment. With the press of the panic alert button, the notification sends to the owner and the nearest police station with the current location of the bus.
文摘Today,on the one hand,while the traditional design process continues,on the other hand,digital design systems along with advances in computer technologies continue to present designers with new and effective ideas.Parametric design is preferred by designers for its relationality,contributing toward versatility,ensuring flexibility,simplifying diversification,and for presenting programmatic solutions.As is seen in a number of areas,we have also begun to encounter the use of parametric designs produced with parametric design systems and wooden materials in urban landscaping.The purpose of this study is to examine the upper cover application and seating elements generated by taking advantage of parametric designs from wooden construction materials in urban landscaping areas,and examine the impact of wooden material characteristics while generating behavior and parametric structures of technologies.After researching parametric design and wooden material concepts,an attempt was made to reach conclusions through analyses conducted by examining parametric wooden designed pavilion and seating element specimens applied in various regions of the world.
基金supported by the National Natural Science Foundation of China(Grant No.12122211)the Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC0035)。
文摘To improve the passive safety of high-speed trains,it is very important to understand the mechanism of head injury in high-speed train collisions.In this study,the head injury mechanisms of occupants in high-speed train rear-end collisions were investigated based on the occupant-seat coupling model,which included a dummy representing the Chinese 50th percentile adult male.The typical injury responses in terms of skull fractures,brain contusions,and diffuse axonal injury(DAI)were analyzed.Meanwhile,the influences of collision speed and seat parameters on head injury response were examined.The simulation results indicate that the skull fractures primarily occur at the skull base region due to excessive neck extension,while the brain contusions and DAI result from the relative displacement of different brain regions.The increase in collision speed will promote the probability of skull fracture,brain contusion,and DAI.Seat design modifications,such as reduced seat spacing,increased seat backrest angles,and selecting the appropriate cushion angle(76°)and friction coefficient(0.15),can effectively mitigate probably occupant's head injury.
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
基金Research Project of Sichuan Nursing Vocational College(Project No.2022RZY38)。
文摘Objective:To evaluate the intervention effects of seated Baduanjin exercise on patients undergoing maintenance hemodialysis(MHD).Methods:A total of 108 MHD patients admitted between July 2022 and July 2023 were selected.They were randomly assigned into two groups:the experimental group,with 55 patients,who received seated Baduanjin exercise combined with leg exercises during dialysis;and the control group,with 53 patients,who only performed leg exercises during dialysis.The psychological state,fatigue symptoms,quality of life,and sleep quality scores were compared between the two groups,and exercise endurance was recorded.Results:After the intervention,the psychological state scores in the experimental group were lower than those in the control group,the fatigue symptom scores were lower,the quality of life scores were higher,the sleep quality scores were lower,and the exercise endurance was higher(P<0.05).Conclusion:Seated Baduanjin exercise can improve the negative psychological state and fatigue symptoms of MHD patients,enhance their quality of life and sleep quality,and effectively increase their exercise endurance.
文摘Seasonal adjustment has been widely used in statistic analyses.Nowadays,the research on seasonal adjustment methods mainly concentrates on X-11,X-12 etc in China,lacking the whole understanding of foreign seasonal adjustment methods,and the latest progress of seasonal adjustment methods has been less introduced.In this article,various seasonal adjustment methods were introduced,and a comparison of their characteristics and applications was made.It is helpful that statistical organizations can develop appropriate seasonal adjustment methods,concerning different kinds of data.