A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameter...A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameters and higher search efficiency.However,due to the limitations of regular shapes,it is challenging to meet high-precision design requirements.Irregular shape design allows for a broader range of adjustments,but the complexity of shape parameters leads to lower search efficiency and a higher likelihood of converging to local optima.展开更多
Declaration of Competing Interest statements were not included in the published version of the following articles that appeared in previous issues of Journal of Automation and Intelligence.The appropriate Declaration ...Declaration of Competing Interest statements were not included in the published version of the following articles that appeared in previous issues of Journal of Automation and Intelligence.The appropriate Declaration of Competing Interest statements,provided by the Authors,are included below.1.“A survey on computationally efficient neural architecture search”[Journal of Automation and Intelligence,1(2022)100002].10.1016/j.jai.2022.100002。展开更多
The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In part...The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62475121 and 62335012)。
文摘A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameters and higher search efficiency.However,due to the limitations of regular shapes,it is challenging to meet high-precision design requirements.Irregular shape design allows for a broader range of adjustments,but the complexity of shape parameters leads to lower search efficiency and a higher likelihood of converging to local optima.
文摘Declaration of Competing Interest statements were not included in the published version of the following articles that appeared in previous issues of Journal of Automation and Intelligence.The appropriate Declaration of Competing Interest statements,provided by the Authors,are included below.1.“A survey on computationally efficient neural architecture search”[Journal of Automation and Intelligence,1(2022)100002].10.1016/j.jai.2022.100002。
基金supported by the State Scholarship Fund of the China Scholarship Council (Grant 2009629129)
文摘The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.