The effect of screen length on the screening efficiency of particles is studied under various single parameter conditions including frequency, amplitude, vibration angle, and screen inclination. The Discrete Element M...The effect of screen length on the screening efficiency of particles is studied under various single parameter conditions including frequency, amplitude, vibration angle, and screen inclination. The Discrete Element Method (DEM) has been used to simulate the screening process. A functional relationship between screening efficiency and screen length is established. It is shown that screening efficiency and screen length have a complicated exponential relationship. Relationships between them are profoundly discussed and conclusions are easily drawn: low values of the parameters do not benefit screening; screening efficiency generally increases with screen length; screening efficiency reaches a plateau when these parameters are in range frequently encountered in practical applications.展开更多
The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circu...The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circular and elliptical vibration of the screen. The results show that the travel velocity of the particles is the fastest, but the screening efficiency is the lowest, for the linear vibration mode. The circular motion resulted in the highest screening efficiency, but the lowest particle travel velocity. In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck. The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment. The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck. Linear screening mode has more near-mesh and small size particles on the first three deck sections, and fewer on the last two sections, compared to the circular or elliptical modes.展开更多
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ...A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.展开更多
Reverse-offset printing(ROP)enables microscale patterning on flexible substrates,making it ideal for fabricating interdigital capacitive(IDC)sensors for atopic dermatitis(AD)monitoring.AD,characterized by skin dryness...Reverse-offset printing(ROP)enables microscale patterning on flexible substrates,making it ideal for fabricating interdigital capacitive(IDC)sensors for atopic dermatitis(AD)monitoring.AD,characterized by skin dryness and inflammation,demands precise hydration tracking.Tailoring IDC electrode gaps to 50µm concentrates the electric field within the stratum corneum(SC),enhancing sensitivity beyond the capabilities of traditional screen printing.Finite element modelling and ROP were employed to assess the impact of electrode geometry and encapsulation thickness on sensor performance.Findings indicate that 50µm electrodes with encapsulation layers under 10µm maintain high sensitivity and consistent operation.A clinical case study demonstrated the 50µm sensor’s ability to distinguish lesional from non-lesional skin.These results inform the optimization of encapsulation-performance balance and advance the design of wearable,high-resolution IDC sensors for continuous skin hydration monitoring in personalized dermatological care.展开更多
基金the Special Topic Fund of Key Science and Technology of Fujian Province (No.2006HZ0002-2) for the financial support of these studies
文摘The effect of screen length on the screening efficiency of particles is studied under various single parameter conditions including frequency, amplitude, vibration angle, and screen inclination. The Discrete Element Method (DEM) has been used to simulate the screening process. A functional relationship between screening efficiency and screen length is established. It is shown that screening efficiency and screen length have a complicated exponential relationship. Relationships between them are profoundly discussed and conclusions are easily drawn: low values of the parameters do not benefit screening; screening efficiency generally increases with screen length; screening efficiency reaches a plateau when these parameters are in range frequently encountered in practical applications.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No.20110095120004)+1 种基金the Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485) for this work
文摘The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circular and elliptical vibration of the screen. The results show that the travel velocity of the particles is the fastest, but the screening efficiency is the lowest, for the linear vibration mode. The circular motion resulted in the highest screening efficiency, but the lowest particle travel velocity. In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck. The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment. The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck. Linear screening mode has more near-mesh and small size particles on the first three deck sections, and fewer on the last two sections, compared to the circular or elliptical modes.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No. 20110095120004)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485)
文摘A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.
文摘Reverse-offset printing(ROP)enables microscale patterning on flexible substrates,making it ideal for fabricating interdigital capacitive(IDC)sensors for atopic dermatitis(AD)monitoring.AD,characterized by skin dryness and inflammation,demands precise hydration tracking.Tailoring IDC electrode gaps to 50µm concentrates the electric field within the stratum corneum(SC),enhancing sensitivity beyond the capabilities of traditional screen printing.Finite element modelling and ROP were employed to assess the impact of electrode geometry and encapsulation thickness on sensor performance.Findings indicate that 50µm electrodes with encapsulation layers under 10µm maintain high sensitivity and consistent operation.A clinical case study demonstrated the 50µm sensor’s ability to distinguish lesional from non-lesional skin.These results inform the optimization of encapsulation-performance balance and advance the design of wearable,high-resolution IDC sensors for continuous skin hydration monitoring in personalized dermatological care.