The primary objective of this paper is to investigate the well-posedness theories associated with the discrete nonlinear Schrodinger and Klein-Gordon equations.These theories encompass both local and global well-posed...The primary objective of this paper is to investigate the well-posedness theories associated with the discrete nonlinear Schrodinger and Klein-Gordon equations.These theories encompass both local and global well-posedness,as well as the existence of blowing-up solutions for large and irregular initial data.The main results presented in this paper can be summarized as follows:(1)Discrete Nonlinear Schrodinger Equation:Global well-posedness in l^(p) spaces for all1≤p≤∞,regardless of whether it is in the defocusing or focusing cases.(2)Discrete Klein-Gordon Equation:Local well-posedness in l^(p) spaces for all 1≤p≤∞.Furthermore,in the defocusing case,we establish global well-posedness in l^(p) spaces for any2≤p≤2σ+2(σ>0).In contrast,in the focusing case,we show that solutions with negative energy blow up within a finite time.These conclusions reveal the distinct dynamic behaviors exhibited by the solutions of the equations in discrete settings compared to their continuous setting.Additionally,they illuminate the significant role that discretization plays in preventing ill-posedness,and collapse for the nonlinear Schrodinger equation.展开更多
In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 rep...In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 represents a trapping potential,and f has an exponential critical growth.Under the appropriate assumptions of f,we have obtained the existence of normalized solutions to the above Schr?dinger equation by introducing a variational method.And these solutions are also high energy solutions with positive energy.展开更多
This paper is concerned with the positive ground state solutions for a quasilinear Schrodinger equation with a Hardy-type term.We obtain positive ground state solutions for the given quasilinear Schrodinger equation b...This paper is concerned with the positive ground state solutions for a quasilinear Schrodinger equation with a Hardy-type term.We obtain positive ground state solutions for the given quasilinear Schrodinger equation by using a change of variables and variational method.展开更多
To the nonlinear Schrodinger–Boussinesq system,with the aid of Adler–Moser polynomials we predict the patterns of higher-order rogue wave solutions containing multiple large parameters.The new interesting rogue wave...To the nonlinear Schrodinger–Boussinesq system,with the aid of Adler–Moser polynomials we predict the patterns of higher-order rogue wave solutions containing multiple large parameters.The new interesting rogue wave patterns of a number of true and predicted solutions are graphically illustrated,including fan-,heart-shaped structures and their skewed versions.The results are significant for both experimental and theoretical studies of rogue wave patterns of integrable systems.展开更多
Estimates of the type L1-L∞ for the Schrödinger Equation on the Line and on Half-Line with a regular potential V(x), express the dispersive nature of the Schrödinger Equation and are the essential e...Estimates of the type L1-L∞ for the Schrödinger Equation on the Line and on Half-Line with a regular potential V(x), express the dispersive nature of the Schrödinger Equation and are the essential elements in the study of the problems of initial values, the asymptotic times for large solutions and Scattering Theory for the Schrödinger equation and non-linear in general;for other equations of Non-linear Evolution. In general, the estimates Lp-Lp' express the dispersive nature of this equation. And its study plays an important role in problems of non-linear initial values;likewise, in the study of problems nonlinear initial values;see [1] [2] [3]. On the other hand, following a series of problems proposed by V. Marchenko [4], that we will name Marchenko’s formulation, and relate it to a generalized version of Theorem 1 given in [1], the main theorem (Theorem 1) of this article provides a transformation operator W?that transforms the Reduced Radial Schrödinger Equation (RRSE) (whose main characteristic is the addition a singular term of quadratic order to a regular potential V(x)) in the Schrödinger Equation on Half-Line (RSEHL) under W. That is to say;W?eliminates the singular term of quadratic order of potential V(x) in the asymptotic development towards zero and adds to the potential V(x) a bounded term and a term exponentially decrease fast enough in the asymptotic development towards infinity, which continues guaranteeing the uniqueness of the potential V(x) in the condition of the infinity boundary. Then the L1-L∞ estimates for the (RRSE) are preserved under the transformation operator , as in the case of (RSEHL) where they were established in [3]. Finally, as an open question, the possibility of extending the L1-L∞ estimates for the case (RSEHL), where added to the potential V(x) an analytical perturbation is mentioned.展开更多
基金in part supported by the NSFC(12171356,12494544)supported by the National Key R&D Program of China(2020 YFA0713300)+1 种基金the NSFC(12531006)the Nankai Zhide Foundation。
文摘The primary objective of this paper is to investigate the well-posedness theories associated with the discrete nonlinear Schrodinger and Klein-Gordon equations.These theories encompass both local and global well-posedness,as well as the existence of blowing-up solutions for large and irregular initial data.The main results presented in this paper can be summarized as follows:(1)Discrete Nonlinear Schrodinger Equation:Global well-posedness in l^(p) spaces for all1≤p≤∞,regardless of whether it is in the defocusing or focusing cases.(2)Discrete Klein-Gordon Equation:Local well-posedness in l^(p) spaces for all 1≤p≤∞.Furthermore,in the defocusing case,we establish global well-posedness in l^(p) spaces for any2≤p≤2σ+2(σ>0).In contrast,in the focusing case,we show that solutions with negative energy blow up within a finite time.These conclusions reveal the distinct dynamic behaviors exhibited by the solutions of the equations in discrete settings compared to their continuous setting.Additionally,they illuminate the significant role that discretization plays in preventing ill-posedness,and collapse for the nonlinear Schrodinger equation.
基金Supported by National Natural Science Foundation of China(Grant Nos.11671403 and 11671236)Henan Provincial General Natural Science Foundation Project(Grant No.232300420113)。
文摘In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 represents a trapping potential,and f has an exponential critical growth.Under the appropriate assumptions of f,we have obtained the existence of normalized solutions to the above Schr?dinger equation by introducing a variational method.And these solutions are also high energy solutions with positive energy.
基金Supported by Research Start-up Fund of Jianghan University(06050001).
文摘This paper is concerned with the positive ground state solutions for a quasilinear Schrodinger equation with a Hardy-type term.We obtain positive ground state solutions for the given quasilinear Schrodinger equation by using a change of variables and variational method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11871396,12271433)Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY036)partly supported by Graduate Student Innovation Project of Northwest University(Grant No.CX2024129)。
文摘To the nonlinear Schrodinger–Boussinesq system,with the aid of Adler–Moser polynomials we predict the patterns of higher-order rogue wave solutions containing multiple large parameters.The new interesting rogue wave patterns of a number of true and predicted solutions are graphically illustrated,including fan-,heart-shaped structures and their skewed versions.The results are significant for both experimental and theoretical studies of rogue wave patterns of integrable systems.
文摘Estimates of the type L1-L∞ for the Schrödinger Equation on the Line and on Half-Line with a regular potential V(x), express the dispersive nature of the Schrödinger Equation and are the essential elements in the study of the problems of initial values, the asymptotic times for large solutions and Scattering Theory for the Schrödinger equation and non-linear in general;for other equations of Non-linear Evolution. In general, the estimates Lp-Lp' express the dispersive nature of this equation. And its study plays an important role in problems of non-linear initial values;likewise, in the study of problems nonlinear initial values;see [1] [2] [3]. On the other hand, following a series of problems proposed by V. Marchenko [4], that we will name Marchenko’s formulation, and relate it to a generalized version of Theorem 1 given in [1], the main theorem (Theorem 1) of this article provides a transformation operator W?that transforms the Reduced Radial Schrödinger Equation (RRSE) (whose main characteristic is the addition a singular term of quadratic order to a regular potential V(x)) in the Schrödinger Equation on Half-Line (RSEHL) under W. That is to say;W?eliminates the singular term of quadratic order of potential V(x) in the asymptotic development towards zero and adds to the potential V(x) a bounded term and a term exponentially decrease fast enough in the asymptotic development towards infinity, which continues guaranteeing the uniqueness of the potential V(x) in the condition of the infinity boundary. Then the L1-L∞ estimates for the (RRSE) are preserved under the transformation operator , as in the case of (RSEHL) where they were established in [3]. Finally, as an open question, the possibility of extending the L1-L∞ estimates for the case (RSEHL), where added to the potential V(x) an analytical perturbation is mentioned.