ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lew...ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lewy (CFL) coefficient. Toro and Titarev employed CCFL=0.95for their experiments. Nonetheless, we noted that the experiments conducted in this study with CCFL=0.95produced solutions exhibiting spurious oscillations, particularly in the high-order ADER-WAF schemes. The homogeneous one-dimensional (1D) non-linear Shallow Water Equations (SWEs) are the subject of these experiments, specifically the solution of the Riemann Problem (RP) associated with the SWEs. The investigation was conducted on four test problems to evaluate the ADER-WAF schemes of second, third, fourth, and fifth order of accuracy. Each test problem constitutes a RP characterized by different wave patterns in its solution. This research has two primary objectives. We begin by illustrating the procedure for implementing the ADER-WAF schemes for the SWEs, providing the required relations. Afterward, following comprehensive testing, we present the range for the CFL coefficient for each test that yields solutions with diminished or eliminated spurious oscillations.展开更多
In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interfac...In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interface capturing(THINC)technique.We employ boundary variation diminishing(BVD)reconstruction to enhance the scheme’s effectiveness in handling shocks.First,we prove that wavelet collocation upwind schemes based on interpolating wavelets can be reformulated into a conservative form within the framework of wavelet theory,forming the foundation of the proposed scheme.The new fourthorder accurate scheme possesses significantly better spectral resolution than the fifth-and even seventh-order WENO-Z(weighted essentially non-oscillatory)schemes over the entire wave-number range.Moreover,the inherent low-pass filtering property of the wavelet bases allows them to filter high-frequency numerical oscillations,endowing the wavelet upwind scheme with robustness and accuracy in solving problems under extreme conditions.Notably,due to the wavelet multiresolution approximation,the proposed scheme possesses a distinctive shape-preserving property absent in the WENO-Z schemes and the fifth-order schemes with BVD reconstruction based on polynomials.Furthermore,compared to the fifth-order scheme with BVD reconstruction based on polynomials—which is significantly superior to the WENO schemes—the proposed scheme further enhances the ability to capture discontinuities.展开更多
Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for du...Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.展开更多
Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under...Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under three different greening schemes in typical areas of the Guangzhou University campus.The results indicate that the outdoor thermal environment is significantly influenced by the underlying surface materials and vegetation.The temperature of brick-paved surface is 0.9℃higher than that of natural soil surfaces under tree shade.Numerical simulations further confirm that increasing vegetation coverage effectively reduces outdoor air temperature.When the greening rate increases to 40%,the outdoor average temperature decreases by 0.7℃and relative humidity increases by approximately 4%,while wind speed remains minimal change.The cooling effect of vegetation is found to extend vertically to an altitude of 13 m.As the greening rate increases from 15%to 40%,the Mean Radiant Temperature(MRT)decreases from 50.6℃to 28.9℃,which is lower than the average ambient temperature,indicating improved thermal conditions.The Physiological Equivalent Temperature(PET)decreases from 40.2℃to 30.0℃,with the proportion of the areas classified as″very hot″reducing by 36.8%,significantly improving thermal comfort across most areas.Therefore,changing the ground material and greening landscape design can effectively alter the outdoor wind and thermal environment of the campus,thereby enhancing the thermal comfort for the campus community.展开更多
Mesh reflector antennas are the mainstream of large space-borne antennas,and the stretching of the truss achieves their deployment.Currently,the truss is commonly designed to be a single degree of freedom(DOF)deployab...Mesh reflector antennas are the mainstream of large space-borne antennas,and the stretching of the truss achieves their deployment.Currently,the truss is commonly designed to be a single degree of freedom(DOF)deployable mechanism with synchronization constraints.However,each deployable unit’s drive distribution and resistance load are uneven,and the forced synchronization constraints lead to the flexible deformation of rods and difficulties in the deployment scheme design.This paper introduces an asynchronous deployment scheme with a multi-DOF closed-chain deployable truss.The DOF of the truss is calculated,and the kinematic and dynamic models are established,considering the truss’s and cable net’s real-time coupling.An integrated solving algorithm for implicit differential-algebraic equations is proposed to solve the dynamic models.A prototype of a six-unit antenna was fabricated,and the experiment was carried out.The dynamic performances in synchronous and asynchronous deployment schemes are analyzed,and the results show that the cable resistance and truss kinetic energy impact under the asynchronous deployment scheme are minor,and the antenna is more straightforward to deploy.The work provides a new asynchronous deployment scheme and a universal antenna modeling method for dynamic design and performance improvement.展开更多
In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-gue...In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.展开更多
Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fractur...Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.展开更多
With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, i...With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM) and Transformer considering the time-series transaction information of smart contracts as well as the global information. Based on the verified smart contract addresses, account features, and code features are extracted to construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification problem. By comparing our method with the other four typical detection methods in the experiment, the LT-SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart contract detection.展开更多
Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,c...Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.展开更多
The implementation of core competencies clarifies social talent needs and guides math classroom evaluation.Lower-grade primary students,highly malleable,need targeted teacher guidance.Teaching evaluation should meet t...The implementation of core competencies clarifies social talent needs and guides math classroom evaluation.Lower-grade primary students,highly malleable,need targeted teacher guidance.Teaching evaluation should meet the talent demands of the times,focusing on core literacy and essential character development.From this perspective,primary math teachers should optimize evaluation,build a diversified system,help students grow in math,find their learning position,and advance confidently.展开更多
BACKGROUND Elderly patients undergoing laparoscopic colorectal cancer surgery are at high risk for hypothermia-related complications.This study explores the efficacy of periop-erative composite insulation intervention...BACKGROUND Elderly patients undergoing laparoscopic colorectal cancer surgery are at high risk for hypothermia-related complications.This study explores the efficacy of periop-erative composite insulation interventions in maintaining normothermia and reducing postoperative risks in this vulnerable group.AIM To evaluate the efficacy of perioperative composite insulation in older patients undergoing colorectal cancer surgery.METHODS We selected 100 older patients who underwent laparoscopic surgery for colorectal cancer at Huzhou Central Hospital from September 2023 to April 2024.Using a random number table,patients were divided into a control group and inter-vention group of 50 patients each.After returning to the regular ward,the con-ventional group received traditional insulation intervention measures,while the intervention group received composite insulation nursing intervention.We ob-served and recorded postoperative blood pressure and heart rate changes,as well as postoperative anesthesia recovery time and incidence of complications.RESULTS The statistical results showed significant differences(P<0.05)in heart rate changes and systolic blood pressure between the two groups.There was a sig-nificant change in heart rate between the groups immediately after surgery and at 15 and 30 minutes after surgery(P<0.05).The heart rate and systolic blood pressure of the intervention group were significantly lower than those of the control group at 15 and 30 minutes after surgery(P<0.05).The rewarming time of the intervention group was shorter than that of the control group,and the overall incidence of postoperative complications was significantly lower than that of the control group(P<0.05).CONCLUSION For elderly patients undergoing laparoscopic colorectal cancer surgery,a composite insulation intervention during the perioperative period can maintain body temperature,reduce postoperative stress,and significantly reduce the incidence of hypothermia and related complications.展开更多
Due to global warming, extreme weather and climate events are becoming more frequent, highlighting the need to explore the changing characteristics of precipitation in China, including extreme precipitation. A cluster...Due to global warming, extreme weather and climate events are becoming more frequent, highlighting the need to explore the changing characteristics of precipitation in China, including extreme precipitation. A clustering algorithm was developed to classify summer(June, July, and August) daily precipitation in China from 1961 to 2020, considering spatial distribution, standard deviations, and frequency of extreme precipitation events. The results reveal six distinct precipitation climate zones, a classification that differs from previous divisions. While overall precipitation has decreased in most regions, the frequency of extreme precipitation events has increased across all clusters, indicating a shift in precipitation distribution patterns. Analysis shows that the weakened Lake Baikal blocking high and strengthened Mongolian cyclone influence the arid region in northwest China(Cluster 1), which is characterized by the lowest precipitation.The transition zone between the monsoon and arid region(Cluster 2) is affected by the Mongolian cyclone, water vapor transport from the Indian Ocean, and shifts in the monsoon boundary. Clusters 3 and 4 represent areas associated with advancement and retreat of the summer monsoon. In the Meiyu region, two distinct subregions have been identified exist.Cluster 4 is primarily influenced by the East Asia-Pacific wave train. Despite sharing similar climate drivers and proximity,Clusters 4 and 5 differ significantly due to topographic variations and disparate levels of urbanization. Cluster 5 exhibits a higher average precipitation, greater variability, and more frequent extreme events. Cluster 6 exhibits the highest overall precipitation in the coastal areas of Guangdong and Guangxi, where abundant water vapor contributes to a higher frequency of extreme precipitation. In addition, anthropogenic activities and urbanization significantly influence precipitation in Beijing-Tianjin-Hebei and Yangtze River Delta regions. This research proposes a precipitation classification scheme integrating multiple precipitation parameters, providing support for risk management and mitigation strategies in the face of increasing extreme precipitation events.展开更多
This study focuses on using a green reagent scheme of methanesulfonic acid (MSA) and citric acid (CA) to extract valuable metals from the cathodes, aiming to minimize environmental impact during the recycling process....This study focuses on using a green reagent scheme of methanesulfonic acid (MSA) and citric acid (CA) to extract valuable metals from the cathodes, aiming to minimize environmental impact during the recycling process. Leaching studies on LiCoO_(2) identified optimal conditions as follows: 2.4 mol/L MSA, 1.6 mol/L CA, S/L ratio of 80 g/L, leaching temperature of 90oC and leaching time of 6 h. The maximum Co and Li extraction achieved was 92% and 85%, respectively. LiCoO_(2) dissolution in MSA-CA leaching solution is highly impacted by temperature;Avrami equation showed a good fitting for the leaching data. The experimental activation energy of Co and Li was 50.98 kJ/mol and 50.55 kJ/mol, respectively, indicating that it is a chemical reaction-controlled process. Furthermore, cobalt was efficiently recovered from the leachate using oxalic acid, achieving a precipitation efficiency of 99.91% and a high-purity cobalt oxalate product (99.85 wt.%). In the MSA-CA leaching solution, MSA served as a lixiviant, while CA played a key role in reducing Co in LiCoO_(2). The overall organic acid leaching methodology presents an attractive option due to its reduced environmental impact.展开更多
Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed...Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed.The correct Fig.3 has been provided in this orrection.展开更多
We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse ...We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse with a plasma and one or multiple photon beams supplied by intense lasers.Owing to nonlinear effects,two-or multiphoton absorption dominates over the conventional multistep one-photon process for an optimized γ flash.Moreover,this nonlinear effect can be greatly enhanced with the help of externally supplied low-energy photons coming from another laser.These low-energy photons act such that the effective cross-section experienced by the γ photons becomes tunable,growing with the intensity I_(0) of the beam.Assuming I_(0)~10^(18) W·cm^(-2) for the photon beam,an effective cross-section as large as 10^(-21)-10^(-28) cm^(2) for the γ photons can be achieved.Thus,with state-of-the-art 10 PW laser facilities,the yields from two-photon absorption can reach 10^(6)-10^(9) isomers per shot for selected states that are separated from their ground state by E2 transitions.Similar yields for transitions with higher multipolarities can be accommodated by multiphoton absorption with additional photons provided.展开更多
The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control...The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control strategies,ensuring fault protection is paramount for the secure and steady operation of the traction power supply system(TPSS)integrated with RBEUS.This paper introduces an innovative protection scheme tailored to diverse RBEUS application scenarios.Firstly,fault categories are streamlined into three levels:system,equipment,and warning.Subsequently,a novel multi-port active power differential protection method,aligned with RBEUS operational principles,is crafted to serve as a comprehensive and sensitive main protection.Building upon this foundation,a hierarchical protection structure for RBEUS is established,addressing the intricacies and variations in fault types while boosting anti-disturbance capabilities under faulty conditions.Embracing the principle of railway-oriented safety,a collaborative RBEUS-TPSS protection scheme is put forth.Finally,through simulated scenarios encompassing various fault conditions,the proposed scheme’s feasibility and effectiveness are convincingly validated.展开更多
International carbon tax issues such as carbon leakage and carbon neutralization have become major topics of social concern.Based on the practical experience of carbon tax system in individual countries,this paper int...International carbon tax issues such as carbon leakage and carbon neutralization have become major topics of social concern.Based on the practical experience of carbon tax system in individual countries,this paper integrates the existing research of international carbon tax scholars to the classification and comparative analysis of international carbon tax schemes.Using a literature review approach,this dissertation mainly applies the method of qualitative analysis to explain and compare the contents of four international carbon tax options.Through the analysis and evaluation of individual countries’carbon tax practice,the two-country model is verified.Through the method of comparative analysis,the schemes are evaluated from four dimensions and an assessment is made.The difference of carbon tax among countries makes the internal policies of countries adjust accordingly with the changes of international environment,which promotes the gradual convergence of carbon tax schemes.The results intend to provide reference to further study the issue on international carbon tax.展开更多
The purpose of the current article is to study the H^(1)-stability for all positive time of the linearly extrapolated BDF2 timestepping scheme for the magnetohydrodynamics and Boussinesq equations.Specifically,we disc...The purpose of the current article is to study the H^(1)-stability for all positive time of the linearly extrapolated BDF2 timestepping scheme for the magnetohydrodynamics and Boussinesq equations.Specifically,we discretize in time using the linearly backward differentiation formula,and by employing both the discrete Gronwall lemma and the discrete uniform Gronwall lemma,we establish that each numerical scheme is uniformly bounded in the H^(1)-norm.展开更多
Internal multiple interference,affecting both seismic data processing and interpretation,has been observed for long time.Although great progress has been achieved in developing a variety of internal-multiple-eliminati...Internal multiple interference,affecting both seismic data processing and interpretation,has been observed for long time.Although great progress has been achieved in developing a variety of internal-multiple-elimination(IME)methods,how to increase accuracy and reduce cost of IME still poses a significant challenge.A new method is proposed to effectively and efficiently eliminate internal multi-ples,along with its application in internal-multiple-eliminated-migration(IMEM),addressing this issue.This method stems from two-way wave equation depth-extrapolation scheme and associated up/down wavefield separation,which can accomplish depth-extrapolation of both up-going and down-going wavefields simultaneously,and complete internal-multiple-elimination processing,adaptively and effi-ciently.The proposed method has several features:(1)input data is same as that for conventional migration:source signature(used for migration only),macro velocity model,and receiver data,without additional requirements for source/receiver sampling;(2)method is efficient,without need of iterative calculations(which are typically needed for most of IME algorithms);and(3)method is cost effective:IME is completed in the same depth-extrapolation scheme of IMEM,without need of a separate pro-cessing and additional cost.Several synthesized data models are used to test the proposed method:one-dimensional model,horizontal layered model,multi-layer model with one curved layer,and SEG/EAGE Salt model.Additionally,we perform a sensitivity analysis of velocity using smoothed models.This analysis reveals that although the accuracy of velocity measurements impacts our proposed method,it significantly reduces internal multiple false imaging compared to traditional RTM techniques.When applied to actual seismic data from a carbonate reservoir zone,our method demonstrates superior clarity in imaging results,even in the presence of high-velocity carbonate formations,outperforming conven-tional migration methods in deep strata.展开更多
Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneous...Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.展开更多
文摘ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lewy (CFL) coefficient. Toro and Titarev employed CCFL=0.95for their experiments. Nonetheless, we noted that the experiments conducted in this study with CCFL=0.95produced solutions exhibiting spurious oscillations, particularly in the high-order ADER-WAF schemes. The homogeneous one-dimensional (1D) non-linear Shallow Water Equations (SWEs) are the subject of these experiments, specifically the solution of the Riemann Problem (RP) associated with the SWEs. The investigation was conducted on four test problems to evaluate the ADER-WAF schemes of second, third, fourth, and fifth order of accuracy. Each test problem constitutes a RP characterized by different wave patterns in its solution. This research has two primary objectives. We begin by illustrating the procedure for implementing the ADER-WAF schemes for the SWEs, providing the required relations. Afterward, following comprehensive testing, we present the range for the CFL coefficient for each test that yields solutions with diminished or eliminated spurious oscillations.
基金supported by the National Natural Science Foundation of China(Grant No.11925204).
文摘In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interface capturing(THINC)technique.We employ boundary variation diminishing(BVD)reconstruction to enhance the scheme’s effectiveness in handling shocks.First,we prove that wavelet collocation upwind schemes based on interpolating wavelets can be reformulated into a conservative form within the framework of wavelet theory,forming the foundation of the proposed scheme.The new fourthorder accurate scheme possesses significantly better spectral resolution than the fifth-and even seventh-order WENO-Z(weighted essentially non-oscillatory)schemes over the entire wave-number range.Moreover,the inherent low-pass filtering property of the wavelet bases allows them to filter high-frequency numerical oscillations,endowing the wavelet upwind scheme with robustness and accuracy in solving problems under extreme conditions.Notably,due to the wavelet multiresolution approximation,the proposed scheme possesses a distinctive shape-preserving property absent in the WENO-Z schemes and the fifth-order schemes with BVD reconstruction based on polynomials.Furthermore,compared to the fifth-order scheme with BVD reconstruction based on polynomials—which is significantly superior to the WENO schemes—the proposed scheme further enhances the ability to capture discontinuities.
基金sponsored by the National Natural Science Foundation of China(U2442601 and U2442218)the High Performance Computing Platform of Nanjing University of Information Science&Technology(NUIST)for their support of this work。
文摘Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.
基金Science and Technology Research Project of Guang-dong Meteorological Bureau(GRMC2022M21)Guangdong Basic and Applied Basic Research Foundation(2023A1515012240)Research Project of Guangzhou Meteor-ological Bureau(M202218)。
文摘Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under three different greening schemes in typical areas of the Guangzhou University campus.The results indicate that the outdoor thermal environment is significantly influenced by the underlying surface materials and vegetation.The temperature of brick-paved surface is 0.9℃higher than that of natural soil surfaces under tree shade.Numerical simulations further confirm that increasing vegetation coverage effectively reduces outdoor air temperature.When the greening rate increases to 40%,the outdoor average temperature decreases by 0.7℃and relative humidity increases by approximately 4%,while wind speed remains minimal change.The cooling effect of vegetation is found to extend vertically to an altitude of 13 m.As the greening rate increases from 15%to 40%,the Mean Radiant Temperature(MRT)decreases from 50.6℃to 28.9℃,which is lower than the average ambient temperature,indicating improved thermal conditions.The Physiological Equivalent Temperature(PET)decreases from 40.2℃to 30.0℃,with the proportion of the areas classified as″very hot″reducing by 36.8%,significantly improving thermal comfort across most areas.Therefore,changing the ground material and greening landscape design can effectively alter the outdoor wind and thermal environment of the campus,thereby enhancing the thermal comfort for the campus community.
基金supported by the National Key R&D Program of China(Grant No.2023YFB3407103)the National Natural Science Foundation of China(Grant Nos.52175242 and 52175027)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(Grant No.2022QNRC001).
文摘Mesh reflector antennas are the mainstream of large space-borne antennas,and the stretching of the truss achieves their deployment.Currently,the truss is commonly designed to be a single degree of freedom(DOF)deployable mechanism with synchronization constraints.However,each deployable unit’s drive distribution and resistance load are uneven,and the forced synchronization constraints lead to the flexible deformation of rods and difficulties in the deployment scheme design.This paper introduces an asynchronous deployment scheme with a multi-DOF closed-chain deployable truss.The DOF of the truss is calculated,and the kinematic and dynamic models are established,considering the truss’s and cable net’s real-time coupling.An integrated solving algorithm for implicit differential-algebraic equations is proposed to solve the dynamic models.A prototype of a six-unit antenna was fabricated,and the experiment was carried out.The dynamic performances in synchronous and asynchronous deployment schemes are analyzed,and the results show that the cable resistance and truss kinetic energy impact under the asynchronous deployment scheme are minor,and the antenna is more straightforward to deploy.The work provides a new asynchronous deployment scheme and a universal antenna modeling method for dynamic design and performance improvement.
基金supported by the National Natural Science Foundation of China(Grant Nos.41975090,U2242201,42075077)the Natural Science Foundation of Hunan Province,China(2022JJ20043)the Science and Technology Innovation Program of Hunan Province,China(2022RC1239)。
文摘In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.
基金the financial support from Intergovernmental International Science and Technology Innovation Cooperation Key Project(2022YFE0128400)National Natural Science Foundation of China(42307209)+2 种基金Shanghai Pujiang Program(2022PJD076)State Energy Center for Shale Oil Research and Development(33550000-22-ZC0613-0365)Natural Science Foundation of Qinghai Province(No.2024-ZJ-717).
文摘Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.
基金This work was granted by Qin Xin Talents Cultivation Program(No.QXTCP C202115)Beijing Information Science and Technology University+1 种基金the Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing Fund(No.GJJ-23)National Social Science Foundation,China(No.21BTQ079).
文摘With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM) and Transformer considering the time-series transaction information of smart contracts as well as the global information. Based on the verified smart contract addresses, account features, and code features are extracted to construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification problem. By comparing our method with the other four typical detection methods in the experiment, the LT-SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart contract detection.
基金supported by the National Natural Science Foundation of China(Grant No.42305169)the Basic Research Fund of CAMS(Grant No.2023Y001)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab)。
文摘Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.
文摘The implementation of core competencies clarifies social talent needs and guides math classroom evaluation.Lower-grade primary students,highly malleable,need targeted teacher guidance.Teaching evaluation should meet the talent demands of the times,focusing on core literacy and essential character development.From this perspective,primary math teachers should optimize evaluation,build a diversified system,help students grow in math,find their learning position,and advance confidently.
文摘BACKGROUND Elderly patients undergoing laparoscopic colorectal cancer surgery are at high risk for hypothermia-related complications.This study explores the efficacy of periop-erative composite insulation interventions in maintaining normothermia and reducing postoperative risks in this vulnerable group.AIM To evaluate the efficacy of perioperative composite insulation in older patients undergoing colorectal cancer surgery.METHODS We selected 100 older patients who underwent laparoscopic surgery for colorectal cancer at Huzhou Central Hospital from September 2023 to April 2024.Using a random number table,patients were divided into a control group and inter-vention group of 50 patients each.After returning to the regular ward,the con-ventional group received traditional insulation intervention measures,while the intervention group received composite insulation nursing intervention.We ob-served and recorded postoperative blood pressure and heart rate changes,as well as postoperative anesthesia recovery time and incidence of complications.RESULTS The statistical results showed significant differences(P<0.05)in heart rate changes and systolic blood pressure between the two groups.There was a sig-nificant change in heart rate between the groups immediately after surgery and at 15 and 30 minutes after surgery(P<0.05).The heart rate and systolic blood pressure of the intervention group were significantly lower than those of the control group at 15 and 30 minutes after surgery(P<0.05).The rewarming time of the intervention group was shorter than that of the control group,and the overall incidence of postoperative complications was significantly lower than that of the control group(P<0.05).CONCLUSION For elderly patients undergoing laparoscopic colorectal cancer surgery,a composite insulation intervention during the perioperative period can maintain body temperature,reduce postoperative stress,and significantly reduce the incidence of hypothermia and related complications.
基金National Natural Science Foundation of China(U2442202, 42274217, 62441501)Key Innovation Team of China Meteorological Administration (CMA2024ZD01)Scientific Research Foundation of CUIT (376278, KYTZ202158)。
文摘Due to global warming, extreme weather and climate events are becoming more frequent, highlighting the need to explore the changing characteristics of precipitation in China, including extreme precipitation. A clustering algorithm was developed to classify summer(June, July, and August) daily precipitation in China from 1961 to 2020, considering spatial distribution, standard deviations, and frequency of extreme precipitation events. The results reveal six distinct precipitation climate zones, a classification that differs from previous divisions. While overall precipitation has decreased in most regions, the frequency of extreme precipitation events has increased across all clusters, indicating a shift in precipitation distribution patterns. Analysis shows that the weakened Lake Baikal blocking high and strengthened Mongolian cyclone influence the arid region in northwest China(Cluster 1), which is characterized by the lowest precipitation.The transition zone between the monsoon and arid region(Cluster 2) is affected by the Mongolian cyclone, water vapor transport from the Indian Ocean, and shifts in the monsoon boundary. Clusters 3 and 4 represent areas associated with advancement and retreat of the summer monsoon. In the Meiyu region, two distinct subregions have been identified exist.Cluster 4 is primarily influenced by the East Asia-Pacific wave train. Despite sharing similar climate drivers and proximity,Clusters 4 and 5 differ significantly due to topographic variations and disparate levels of urbanization. Cluster 5 exhibits a higher average precipitation, greater variability, and more frequent extreme events. Cluster 6 exhibits the highest overall precipitation in the coastal areas of Guangdong and Guangxi, where abundant water vapor contributes to a higher frequency of extreme precipitation. In addition, anthropogenic activities and urbanization significantly influence precipitation in Beijing-Tianjin-Hebei and Yangtze River Delta regions. This research proposes a precipitation classification scheme integrating multiple precipitation parameters, providing support for risk management and mitigation strategies in the face of increasing extreme precipitation events.
文摘This study focuses on using a green reagent scheme of methanesulfonic acid (MSA) and citric acid (CA) to extract valuable metals from the cathodes, aiming to minimize environmental impact during the recycling process. Leaching studies on LiCoO_(2) identified optimal conditions as follows: 2.4 mol/L MSA, 1.6 mol/L CA, S/L ratio of 80 g/L, leaching temperature of 90oC and leaching time of 6 h. The maximum Co and Li extraction achieved was 92% and 85%, respectively. LiCoO_(2) dissolution in MSA-CA leaching solution is highly impacted by temperature;Avrami equation showed a good fitting for the leaching data. The experimental activation energy of Co and Li was 50.98 kJ/mol and 50.55 kJ/mol, respectively, indicating that it is a chemical reaction-controlled process. Furthermore, cobalt was efficiently recovered from the leachate using oxalic acid, achieving a precipitation efficiency of 99.91% and a high-purity cobalt oxalate product (99.85 wt.%). In the MSA-CA leaching solution, MSA served as a lixiviant, while CA played a key role in reducing Co in LiCoO_(2). The overall organic acid leaching methodology presents an attractive option due to its reduced environmental impact.
基金supported in part by STI 2030-Major Projects under Grant 2022ZD0209200in part by Beijing Natural Science Foundation-Xiaomi Innovation Joint Fund (L233009)+4 种基金in part by National Natural Science Foundation of China under Grant No. 62374099in part by the Tsinghua-Toyota Joint Research Fundin part by the Daikin Tsinghua Union Programin part by Independent Research Program of School of Integrated Circuits,Tsinghua Universitysponsored by CIE-Tencent Robotics X Rhino-Bird Focused Research Program
文摘Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed.The correct Fig.3 has been provided in this orrection.
基金supported by the Extreme Light Infrastructure Nuclear Physics(ELI-NP)Phase Ⅱ,a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund—the Competitiveness Operational Programme(1/07.07.2016,COP,ID 1334)the Romanian Ministry of Research and Innovation:PN23210105(Phase 2,the Program Nucleu),ELI-RO grants Proiectul ELI-RO/RDI_2024_AMAP,ELI-RO_RDI_2024_LaLuThe,ELIRO_RDI_2024_SPARC+4 种基金ELI10/01.10.2020 of the Romanian Governmentthe European Union,the Romanian Governmentthe Health Program,within the project“Medical Applications of High-Power Lasers—Dr.LASER”SMIS Code:326475the IOSIN funds for research infrastructures of national interest.
文摘We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse with a plasma and one or multiple photon beams supplied by intense lasers.Owing to nonlinear effects,two-or multiphoton absorption dominates over the conventional multistep one-photon process for an optimized γ flash.Moreover,this nonlinear effect can be greatly enhanced with the help of externally supplied low-energy photons coming from another laser.These low-energy photons act such that the effective cross-section experienced by the γ photons becomes tunable,growing with the intensity I_(0) of the beam.Assuming I_(0)~10^(18) W·cm^(-2) for the photon beam,an effective cross-section as large as 10^(-21)-10^(-28) cm^(2) for the γ photons can be achieved.Thus,with state-of-the-art 10 PW laser facilities,the yields from two-photon absorption can reach 10^(6)-10^(9) isomers per shot for selected states that are separated from their ground state by E2 transitions.Similar yields for transitions with higher multipolarities can be accommodated by multiphoton absorption with additional photons provided.
基金supported by the National Natural Science Foundation of China(Nos.52107126 and52077179)the Key Regional Innovation and Development Joint Fund Project(No.2023YFB2303901)the funding of Chengdu Guojia Electrical Engineering Co.,Ltd.(No.NEEC-2022-B11).
文摘The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control strategies,ensuring fault protection is paramount for the secure and steady operation of the traction power supply system(TPSS)integrated with RBEUS.This paper introduces an innovative protection scheme tailored to diverse RBEUS application scenarios.Firstly,fault categories are streamlined into three levels:system,equipment,and warning.Subsequently,a novel multi-port active power differential protection method,aligned with RBEUS operational principles,is crafted to serve as a comprehensive and sensitive main protection.Building upon this foundation,a hierarchical protection structure for RBEUS is established,addressing the intricacies and variations in fault types while boosting anti-disturbance capabilities under faulty conditions.Embracing the principle of railway-oriented safety,a collaborative RBEUS-TPSS protection scheme is put forth.Finally,through simulated scenarios encompassing various fault conditions,the proposed scheme’s feasibility and effectiveness are convincingly validated.
文摘International carbon tax issues such as carbon leakage and carbon neutralization have become major topics of social concern.Based on the practical experience of carbon tax system in individual countries,this paper integrates the existing research of international carbon tax scholars to the classification and comparative analysis of international carbon tax schemes.Using a literature review approach,this dissertation mainly applies the method of qualitative analysis to explain and compare the contents of four international carbon tax options.Through the analysis and evaluation of individual countries’carbon tax practice,the two-country model is verified.Through the method of comparative analysis,the schemes are evaluated from four dimensions and an assessment is made.The difference of carbon tax among countries makes the internal policies of countries adjust accordingly with the changes of international environment,which promotes the gradual convergence of carbon tax schemes.The results intend to provide reference to further study the issue on international carbon tax.
文摘The purpose of the current article is to study the H^(1)-stability for all positive time of the linearly extrapolated BDF2 timestepping scheme for the magnetohydrodynamics and Boussinesq equations.Specifically,we discretize in time using the linearly backward differentiation formula,and by employing both the discrete Gronwall lemma and the discrete uniform Gronwall lemma,we establish that each numerical scheme is uniformly bounded in the H^(1)-norm.
基金supported by the National Natural Science Foundation of China(Grant No.42004103)Sichuan Science and Technology Program(2023NSFSC0257)the CNPC Innovation Found(2022DQ02-0306).
文摘Internal multiple interference,affecting both seismic data processing and interpretation,has been observed for long time.Although great progress has been achieved in developing a variety of internal-multiple-elimination(IME)methods,how to increase accuracy and reduce cost of IME still poses a significant challenge.A new method is proposed to effectively and efficiently eliminate internal multi-ples,along with its application in internal-multiple-eliminated-migration(IMEM),addressing this issue.This method stems from two-way wave equation depth-extrapolation scheme and associated up/down wavefield separation,which can accomplish depth-extrapolation of both up-going and down-going wavefields simultaneously,and complete internal-multiple-elimination processing,adaptively and effi-ciently.The proposed method has several features:(1)input data is same as that for conventional migration:source signature(used for migration only),macro velocity model,and receiver data,without additional requirements for source/receiver sampling;(2)method is efficient,without need of iterative calculations(which are typically needed for most of IME algorithms);and(3)method is cost effective:IME is completed in the same depth-extrapolation scheme of IMEM,without need of a separate pro-cessing and additional cost.Several synthesized data models are used to test the proposed method:one-dimensional model,horizontal layered model,multi-layer model with one curved layer,and SEG/EAGE Salt model.Additionally,we perform a sensitivity analysis of velocity using smoothed models.This analysis reveals that although the accuracy of velocity measurements impacts our proposed method,it significantly reduces internal multiple false imaging compared to traditional RTM techniques.When applied to actual seismic data from a carbonate reservoir zone,our method demonstrates superior clarity in imaging results,even in the presence of high-velocity carbonate formations,outperforming conven-tional migration methods in deep strata.
基金jointly supported by the National Natural Science Foundation of China (U21A20495)Natural Science Foundation of Jiangsu Province (BG2024023)+1 种基金National Key Research and Development Program of China (2022YFE0112000)111 Project (D17018)。
文摘Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.