期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting 被引量:1
1
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
MILP Modeling and Optimization of Three-Stage Flexible Job Shop Scheduling Problem with Assembly and AGV Transportation
2
作者 Shiming Yang Leilei Meng +3 位作者 Saif Ullah Chaoyong Zhang Hongyan Sang Biao Zhang 《Chinese Journal of Mechanical Engineering》 2025年第6期238-255,共18页
The flexible job shop scheduling problem(FJSP)is commonly encountered in practical manufacturing environments.A product is typically built by assembling multiple jobs during actual manufacturing.AGVs are normally used... The flexible job shop scheduling problem(FJSP)is commonly encountered in practical manufacturing environments.A product is typically built by assembling multiple jobs during actual manufacturing.AGVs are normally used to transport the jobs from the processing shop to the assembly shop,where they are assembled.Therefore,studying the integrated scheduling problem with its processing,transportation,and assembly stages is extremely beneficial and significant.This research studies the three-stage flexible job shop scheduling problem with assembly and AGV transportation(FJSP-T-A),which includes processing jobs,transporting them via AGVs,and assembling them.A mixed integer linear programming(MILP)model is established to obtain optimal solutions.As the MILP model is challenging for solving large-scale problems,a novel co-evolutionary algorithm(NCEA)with two different decoding methods is proposed.In NCEA,a restart operation is developed to improve the diversity of the population,and a multiple crossover strategy is designed to improve the quality of individuals.The validity of the MILP model is proven by analyzing its complexity.The effectiveness of the restart operator,multiple crossovers,and the proposed algorithm is demonstrated by calculating and analyzing the RPI values of each algorithm's results within the time limit and performing a paired t-test on the average values of each algorithm at the 95%confidence level.This paper studies FJSP-T-A by minimizing the makespan for the first time,and presents a MILP model and an NCEA with two different decoding methods. 展开更多
关键词 Flexible job shop scheduling AGV ASSEMBLY Co-evolutionary algorithm Mixed integer linear programming
在线阅读 下载PDF
A Q-Learning-Assisted Co-Evolutionary Algorithm for Distributed Assembly Flexible Job Shop Scheduling Problems
3
作者 Song Gao Shixin Liu 《Computers, Materials & Continua》 2025年第6期5623-5641,共19页
With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research s... With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research studies a distributed flexible job shop scheduling problem with assembly operations.Firstly,a mixed integer programming model is formulated to minimize the maximum completion time.Secondly,a Q-learning-assisted coevolutionary algorithmis presented to solve themodel:(1)Multiple populations are developed to seek required decisions simultaneously;(2)An encoding and decoding method based on problem features is applied to represent individuals;(3)A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population;(4)Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;(5)Three neighborhood structures based on problem features are constructed,and a Q-learning-based iterative local search method is devised to improve exploitation abilities.The Q-learning approach is applied to intelligently select better neighborhood structures.Finally,a group of instances is constructed to perform comparison experiments.The effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without the Q-learning method.Three renowned meta-heuristic algorithms are used in comparison with the developed algorithm.The comparison results demonstrate that the designed method exhibits better performance in coping with the formulated problem. 展开更多
关键词 Distributed manufacturing flexible job shop scheduling problem assembly operation co-evolutionary algorithm Q-learning method
在线阅读 下载PDF
Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm 被引量:13
4
作者 WANG Cuiyu LI Yang LI Xinyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期261-271,共11页
The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborativ... The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms. 展开更多
关键词 flexible job shop scheduling problem(FJSP) collaborative genetic algorithm co-evolutionary algorithm
在线阅读 下载PDF
Research on Flexible Flow⁃Shop Scheduling Problem with Lot Streaming in IOT⁃Based Manufacturing Environment 被引量:4
5
作者 DAI Min WANG Lixing +2 位作者 GU Wenbin ZHANG Yuwei DORJOY M M H 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期831-838,共8页
It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet o... It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet of things(IOT)in the manufacturing industry,aiming at the capacitor manufacturing plant,a multi-level architecture oriented to IOT-based manufacturing environment is established for a flexible flow-shop scheduling system.Next,according to multi-source manufacturing information driven in the manufacturing execution process,a scheduling optimization model based on the lot-streaming strategy is proposed under the framework.An improved distribution estimation algorithm is developed to obtain the optimal solution of the problem by balancing local search and global search.Finally,experiments are carried out and the results verify the feasibility and effectiveness of the proposed approach. 展开更多
关键词 IOT-based manufacturing flexible flow-shop scheduling intelligent algorithm lot-streaming strategy
在线阅读 下载PDF
An Improved Genetic Algorithm for Solving the Mixed⁃Flow Job⁃Shop Scheduling Problem with Combined Processing Constraints 被引量:4
6
作者 ZHU Haihua ZHANG Yi +2 位作者 SUN Hongwei LIAO Liangchuang TANG Dunbing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期415-426,共12页
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.... The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness. 展开更多
关键词 mixed-flow production flexible job-shop scheduling problem(FJSP) genetic algorithm ENCODING
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
7
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling 被引量:2
8
作者 CuiyuWang Xinyu Li Yiping Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1849-1870,共22页
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl... Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods. 展开更多
关键词 Multi-objective flexible job shop scheduling Pareto archive set collaborative evolutionary crowd similarity
在线阅读 下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer 被引量:2
9
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem 被引量:1
10
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
在线阅读 下载PDF
Flexible Personnel Scheduling in the Parallel Environment 被引量:2
11
作者 XU Ben-zhu ZHANG Xing-ling 《Computer Aided Drafting,Design and Manufacturing》 2014年第2期60-66,共7页
In the view of staff shortages and the huge inventory of products in the current market, we put forward a personnel scheduling model in the target of closing to the delivery date considering the parallelism. Then we d... In the view of staff shortages and the huge inventory of products in the current market, we put forward a personnel scheduling model in the target of closing to the delivery date considering the parallelism. Then we designed a scheduling algorithm based on genetic algorithm and proposed a flexible parallel decoding method which take full use of the personal capacity. Case study results indicate that the flexible personnel scheduling considering the order-shop scheduling, machine automatic capabilities and personnel flexible in the target of closing to the delivery date optimize the allocation of human resources, then maximize the efficiency. 展开更多
关键词 delivery staff shortages PARALLELISM genetic algorithm flexible scheduling
在线阅读 下载PDF
Scheduling Optimization Modelling:A Case Study of a Woven Label Manufacturing Company
12
作者 Chia-Nan Wang Zhao-Hong Cheng +1 位作者 Nguyen Ky Phuc Phan Van Thanh Nguyen 《Computer Systems Science & Engineering》 SCIE EI 2021年第8期239-249,共11页
Production scheduling involves all activities of building production schedules,including coordinating and assigning activities to each person,group of people,or machine and arranging work orders in each workplace.Prod... Production scheduling involves all activities of building production schedules,including coordinating and assigning activities to each person,group of people,or machine and arranging work orders in each workplace.Production scheduling must solve all problems such as minimizing customer wait time,storage costs,and production time;and effectively using the enterprise’s human resources.This paper studies the application of flexible job shop modelling on scheduling a woven labelling process.The labelling process includes several steps which are handled in different work-stations.Each workstation is also comprised of several identical parallel machines.In this study,job splitting is allowed so that the power of work stations can be utilized better.The final objective is to minimize the total completion time of all jobs.The results show a significant improvement since the new planning may save more than 60%of lead time compared to the current schedule.The contribution of this research is to propose a flexible job shop model for scheduling a woven labelling process.The proposed approach can also be applied to support complex production scheduling processes under fuzzy environments in different industries.A practical case study demonstrates the effectiveness of the proposed model. 展开更多
关键词 Flexible job shop scheduling Woven labelling Garment industry OPTIMIZATION Production scheduling
在线阅读 下载PDF
A Trip-Chain Based User Equilibrium Traffic Assignment Model with Flexible Activities Scheduling Order
13
作者 Chung-Yung Wang Hsiang-Wu Chen 《Journal of Traffic and Transportation Engineering》 2016年第1期1-10,共10页
This study developed a user equilibrium traffic assignment model based on trip-chains with flexible activity scheduling order and derived the corresponding optimality conditions. We based on the gradient projection me... This study developed a user equilibrium traffic assignment model based on trip-chains with flexible activity scheduling order and derived the corresponding optimality conditions. We based on the gradient projection method to develop a solution algorithm, the accuracy of which was verified using the test network of UTown. This model could be used to estimate the transportation demands with and without activities scheduling restriction between OD (origin-destination) pairs based on trip-chains, as well as based on trips. Thus, the proposed model is more generalization than conventional trip based or trip-chain based traffic assignment models. 展开更多
关键词 Traffic assignment trip-chain flexible activity scheduling order gradient projection method.
在线阅读 下载PDF
Modeling and Solving Lot-Splitting Scheduling Problem Based on Process
14
作者 XU Ben-zhu JI Jing FEI Xiao-lu 《Computer Aided Drafting,Design and Manufacturing》 2015年第3期49-55,共7页
In flexible job-shop batch scheduling problem, the optimal lot-size of different process is not always the same because of different processing time and set-up time. Even for the same process of the same workpiece, th... In flexible job-shop batch scheduling problem, the optimal lot-size of different process is not always the same because of different processing time and set-up time. Even for the same process of the same workpiece, the choice of machine also affects the optimal lot-size. In addition, different choices of lot-size between the constrained processes will impact the manufacture efficiency. Considering that each process has its own appropriate lot-size, we put forward the concept of scheduling with lot-splitting based on process and set up the scheduling model of lot-splitting to critical path process as the core. The model could update the set of batch process and machine selection strategy dynamically to determine processing route and arrange proper lot-size for different processes, to achieve the purpose of optimizing the makespan and reducing the processing batches effectively. The experiment results show that, comparing with lot-splitting scheduling scheme based on workpiece, this model optimizes the makespan and improves the utilization efficiency of the machine. It also greatly decreases the machined batches (42%) and reduces the complexity of shop scheduling production management. 展开更多
关键词 flexible job shop scheduling with lot-splitting batch scheduling strategy based on process scheduling scheme based on workpiece different lot-sizing
在线阅读 下载PDF
Cloud-Edge-Collaboration-Based Flexibility Scheduling Strategy Considering Communication and Computation Delay
15
作者 Wei Zhang Hui Miao 《CSEE Journal of Power and Energy Systems》 2025年第4期1858-1869,共12页
As the penetration rate of renewable energy sources(RES)gradually increases,demand-side resources(DSR)should be fully utilized to provide flexibility and rapidly respond to real-time power supply-demand imbalance.Howe... As the penetration rate of renewable energy sources(RES)gradually increases,demand-side resources(DSR)should be fully utilized to provide flexibility and rapidly respond to real-time power supply-demand imbalance.However,scheduling a large number of DSR clusters will inevitably bring unbearable transmission delay,and computation delay,which in turn lead to lower response speeds.This paper examines flexibility scheduling of DSR clusters within a smart distribution network(SDN)in view of both kinds of delay.Building upon a SDN model,maximum schedulable flexibility of DSR clusters is first quantified.Then,a flexibility response curve is analyzed to reflect the effect of delay on flexibility scheduling.Aiming at reducing flexibility shortage brought by delay,we propose a modified flexibility scheduling strategy based on cloud-edge collaboration.Compared with traditional strategy,centralized optimization is replaced by distributed optimization to consider both economic efficiency and effect of delay.Besides,an offloading strategy is also formulated to decide optimal edge nodes and corresponding wired paths for edge computations.In a case study,we evaluate scheduled flexibility,operational cost,average delay and the chosen edge nodes for edge computations with traditional strategy and our proposed strategy.Evaluation results show the proposed strategy can significantly reduce the effect of delay on flexibility scheduling,and guarantee the optimality of operational cost to some extent. 展开更多
关键词 Cloud-edge collaboration demand-side resources distributedooptimization flexibility scheduling offloading strategy smart distribution network
原文传递
A Flexibility Scheduling Method for Distribution Network Based on Robust Graph DRL Against State Adversarial Attacks
16
作者 Ziyang Yin Shouxiang Wang Qianyu Zhao 《Journal of Modern Power Systems and Clean Energy》 2025年第2期514-526,共13页
In the context of large-scale photovoltaic integration,flexibility scheduling is essential to ensure the secure and efficient operation of distribution networks(DNs).Recently,deep reinforcement learning(DRL)has been w... In the context of large-scale photovoltaic integration,flexibility scheduling is essential to ensure the secure and efficient operation of distribution networks(DNs).Recently,deep reinforcement learning(DRL)has been widely applied to scheduling problems.However,most methods neglect the vulnerability of DRL to state adversarial attacks such as load redistribution attacks,significantly undermining its security and reliability.To this end,a flexibility scheduling method is proposed based on robust graph DRL(RoGDRL).A flexibility gain improvement model considering temperature-dependent resistance is first proposed,which considers weather factors as additional variables to enhance the precision of flexibility analysis.Based on this,a state-adversarial two-player zero-sum Markov game(SA-TZMG)model is proposed,which converts the robust DRL scheduling problem into a Nash equilibrium problem.The proposed SA-TZMG model considers the physical constraints of state attacks that guarantee the maximal flexibility gain for the defender when confronted with the most sophisticated and stealthy attacker.A two-stage RoGDRL algorithm is proposed,which introduces the graph sample and aggregate(GraphSAGE)driven soft actor-critic to capture the complex feature about the neighbors of nodes and their properties via inductive learning,thereby solving the Nash equilibrium policies more efficiently.Simulations based on the modified IEEE 123-bus system demonstrates the efficacy of the proposed method. 展开更多
关键词 Distribution network photovoltaic flexibility scheduling deep reinforcement learning cyber attack
原文传递
A new 2D Hindmarsh–Rose neuron,its circuit implementation,and its application in dynamic flexible job shops problem
17
作者 Yao Lu Weijie Nie +2 位作者 Xu Wang Xianming Wu Qingyao Ma 《Chinese Physics B》 2025年第12期99-110,共12页
We propose a simplified version of the classic two-dimensional Hindmarsh–Rose neuron(2DHR),resulting in a new 2DHR that exhibits novel chaotic phenomena.Its dynamic characteristics are analyzed through bifurcation di... We propose a simplified version of the classic two-dimensional Hindmarsh–Rose neuron(2DHR),resulting in a new 2DHR that exhibits novel chaotic phenomena.Its dynamic characteristics are analyzed through bifurcation diagrams,Lyapunov exponent spectra,equilibrium points,and phase diagrams.Based on this system,a corresponding circuit is designed and circuit simulations are carried out,yielding results consistent with the numerical simulations.To explore practical applications of chaotic systems,2DHR is employed to improve the solution of the flexible job-shop scheduling problem with dynamic events.The research results demonstrate that applying 2DHR can significantly enhance the convergence rate of the optimization algorithm and improve the quality of the scheduling solution. 展开更多
关键词 CHAOS nervous system meta-heuristic algorithm dynamic flexible job-shop scheduling problem
原文传递
Research on Design Method of Dynamic Shop Floor Scheduling System Based on Human-computer Interaction
18
作者 Songling TIAN Zhuke CAI +1 位作者 Xiaoqiang WU Xiaoqian QI 《Mechanical Engineering Science》 2025年第2期17-26,共10页
The shop floor dynamic scheduling system based on human-computer interaction is the use of computer-aided decision-making and human-computer interaction to solve the dynamic scheduling problem.A human-computer interac... The shop floor dynamic scheduling system based on human-computer interaction is the use of computer-aided decision-making and human-computer interaction to solve the dynamic scheduling problem.A human-computer interaction interface based on Gantt chart is designed,which can not only comprehensively and quantitatively represent the scheduling process and scheduling scheme,but also have friendly human-computer interaction performance.The data transmission and interaction architecture is constructed to realize the rapid response to shop floor disturbance events.A priority calculation algorithm integrating priority rules and dispatcher preference is proposed,which realizes the automatic calculation of priority for the dispatcher's reference and reduces theirburden.A man-machine interactive shop floor dynamic scheduling strategy is proposed.When solving the dynamic flexible job shop scheduling problem caused by machine tool breakdown and urgent order,the origin moments obtained by using this strategy are 0.4190 and 0.3703 respectively.As can be seen from the origin moment indicator,the dynamic shop floor scheduling system based on the human-computer interaction is efficient and reliable in solving dynamic scheduling problems,and related strategies of this system are also feasible and stable. 展开更多
关键词 Human-computer interaction Dynamic scheduling Flexible shop floor scheduling Perturbation events
在线阅读 下载PDF
Novel Hybrid Algorithm of Cooperative Evolutionary Algorithm and Constraint Programming for Dual Resource Constrained Flexible Job Shop Scheduling Problems
19
作者 Changao Li Leilei Meng +3 位作者 Saif Ullah Peng Duan Biao Zhang Hongyan Sang 《Complex System Modeling and Simulation》 2025年第3期236-251,共16页
In real production,machines are operated by workers,and the constraints of worker flexibility should be considered.The flexible job shop scheduling problem with both machine and worker resources(DRCFJSP)has become a r... In real production,machines are operated by workers,and the constraints of worker flexibility should be considered.The flexible job shop scheduling problem with both machine and worker resources(DRCFJSP)has become a research hotspot in recent years.In this paper,DRCFJSP with the objective of minimizing the makespan is studied,and it should solve three sub-problems:machine allocation,worker allocation,and operations sequencing.To solve DRCFJSP,a novel hybrid algorithm(CEAM-CP)of cooperative evolutionary algorithm with multiple populations(CEAM)and constraint programming(CP)is proposed.Specifically,the CEAM-CP algorithm is comprised of two main stages.In the first stage,CEAM is used based on three-layer encoding and full active decoding.Moreover,CEAM has three populations,each of which corresponds to one layer encoding and determines one sub-problem.Moreover,each population evolves cooperatively by multiple cross operations.To further improve the solution quality obtained by CEAM,CP is adopted in the second stage.Experiments are conducted on 13 benchmark instances to assess the effectiveness of multiple crossover operations,CP,and CEAM-CP.Most importantly,the proposed CEAM-CP improves 9 best-known solutions out of 13 benchmark instances. 展开更多
关键词 flexible job shop scheduling problem worker flexibility machine flexibility cooperative evolution algorithm constraint programming
原文传递
Digital-twin-based dynamic flexible job shop scheduling problem via multi-agent proximal policy optimisation
20
作者 Minghai Yuan Zhen Zhang +2 位作者 Kefu Mao Yang Ye Fengque Pei 《Digital Twin》 2025年第2期30-51,共22页
Despite advancements in optimisation techniques,existing flexible job shop problem(FJSP)models are reactive and struggle with dynamic scheduling.Digital twin(DT)technology offers a solution.This study integrates DT wi... Despite advancements in optimisation techniques,existing flexible job shop problem(FJSP)models are reactive and struggle with dynamic scheduling.Digital twin(DT)technology offers a solution.This study integrates DT with deep reinforcement learning(DRL)for proactive dynamic scheduling.A digital twin-based framework with multi-agent proximal policy optimisation(PPO)was used to adapt scheduling strategies in real-time.The virtual environment simulates production,predicts disruptions,and enables proactive adjustment.The dynamic flexible job shop problem(DFJSP)is modelled as a Markov decision process(MDP)with agents introduced to optimise decisions using DRL.The state and action spaces for the machine and job agents were designed to capture the real-time states.The reward function combines global(makespan)and local(machine utilisation)rewards.Multi-agent PPO trains agents in a virtual environment based on DT interactions.Experiments show that the method outperforms traditional rules and genetic algorithms,particularly in large-scale problems.Additionally,a real-world case study proved its effectiveness in managing machine failures and ensuring on-time completion with minimal deviation in dynamic and uncertain environments. 展开更多
关键词 Dynamic flexible job shop scheduling problem digital twin deep reinforcement learning multi-agent PPO
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部