This paper demonstrates the realization of an optical switch by optically manipulating a large number of polystyrene spheres contained in a capillary. The strong scattering force exerted on polystyrene spheres with a ...This paper demonstrates the realization of an optical switch by optically manipulating a large number of polystyrene spheres contained in a capillary. The strong scattering force exerted on polystyrene spheres with a large diameter of 4.3 μm is employed to realize the switching operation. A transparent window is opened for the signal light when the polystyrene spheres originally located at the beam centre are driven out of the beam region by the strong scattering force induced by the control light. The switching dynamics under different incident powers is investigated and compared with that observed in the optical switch based on the formation of optical matter. It is found that a large extinction ratio of - 30 dB and fast switching-on and switching-off times can be achieved in this type of switch.展开更多
Surface tension-induced shrinkage of heterogeneously bonded interfaces is a key factor in limiting the performance of nanostructures.Herein,we demonstrate a laser-induced thermo-compression bonding technology to suppr...Surface tension-induced shrinkage of heterogeneously bonded interfaces is a key factor in limiting the performance of nanostructures.Herein,we demonstrate a laser-induced thermo-compression bonding technology to suppress surface tension-induced shrinkage of Cu-Au bonded interface.A focused laser beam is used to apply localized heating and scattering force to the exposed Cu nanowire.The laser-induced scattering force and the heating can be adjusted by regulating the exposure intensity.When the ratio of scattering forces to the gravity of the exposed nanowire reaches 3.6×10^(3),the molten Cu nanowire is compressed into flattened shape rather than shrinking into nanosphere by the surface tension.As a result,the Cu-Au bonding interface is broadened fourfold by the scattering force,leading to a reduction in contact resistance of approximately 56%.This noncontact thermo-compression bonding technology provides significant possibilities for the interconnect packaging and integration of nanodevices.展开更多
A transport equation of momentum for relativistic electrons scattered isotropically was previously reported. Here, a momentum-transport equation for relativistic electrons “scattered anisotropically” by the Coulomb ...A transport equation of momentum for relativistic electrons scattered isotropically was previously reported. Here, a momentum-transport equation for relativistic electrons “scattered anisotropically” by the Coulomb force is inquired into. An ideal plasma consisting of electrons and deuterons is treated again. Also, to raise a generation-ability of a thermionic energy converter, a means of introducing external electric and magnetic fields within “a converter in which an emitter plate and a collector plate face simply each other” is proposed.展开更多
Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing sc...Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10974060 and 10774050 )the Program for Innovative Research Team of the Higher Education of Guangdong Province of China (Grant No. 06CXTD005)
文摘This paper demonstrates the realization of an optical switch by optically manipulating a large number of polystyrene spheres contained in a capillary. The strong scattering force exerted on polystyrene spheres with a large diameter of 4.3 μm is employed to realize the switching operation. A transparent window is opened for the signal light when the polystyrene spheres originally located at the beam centre are driven out of the beam region by the strong scattering force induced by the control light. The switching dynamics under different incident powers is investigated and compared with that observed in the optical switch based on the formation of optical matter. It is found that a large extinction ratio of - 30 dB and fast switching-on and switching-off times can be achieved in this type of switch.
基金supported by the National Natural Science Foundation of China(Nos.52305612 and U20A6004)Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration(Wuhan University)(NO.EMPI2023015).
文摘Surface tension-induced shrinkage of heterogeneously bonded interfaces is a key factor in limiting the performance of nanostructures.Herein,we demonstrate a laser-induced thermo-compression bonding technology to suppress surface tension-induced shrinkage of Cu-Au bonded interface.A focused laser beam is used to apply localized heating and scattering force to the exposed Cu nanowire.The laser-induced scattering force and the heating can be adjusted by regulating the exposure intensity.When the ratio of scattering forces to the gravity of the exposed nanowire reaches 3.6×10^(3),the molten Cu nanowire is compressed into flattened shape rather than shrinking into nanosphere by the surface tension.As a result,the Cu-Au bonding interface is broadened fourfold by the scattering force,leading to a reduction in contact resistance of approximately 56%.This noncontact thermo-compression bonding technology provides significant possibilities for the interconnect packaging and integration of nanodevices.
文摘A transport equation of momentum for relativistic electrons scattered isotropically was previously reported. Here, a momentum-transport equation for relativistic electrons “scattered anisotropically” by the Coulomb force is inquired into. An ideal plasma consisting of electrons and deuterons is treated again. Also, to raise a generation-ability of a thermionic energy converter, a means of introducing external electric and magnetic fields within “a converter in which an emitter plate and a collector plate face simply each other” is proposed.
基金Project(51375113)supported by the National Natural Science Foundation of China
文摘Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.