Traumatic injury to the adult mammalian central nervous system(CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the prod...Traumatic injury to the adult mammalian central nervous system(CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims:(1) inhibition of glial and fibrotic scar formation, and(2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.展开更多
基金supported by grants from the National Basic Research Development Program (973 Program) of China (2014CB542202)National High-Technology Research Program (863 Program) of China (2012AA020502)+1 种基金the National Natural Science Foundation of China (81130080)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,Jiangsu Province,China
文摘Traumatic injury to the adult mammalian central nervous system(CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims:(1) inhibition of glial and fibrotic scar formation, and(2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.