期刊文献+
共找到1,994篇文章
< 1 2 100 >
每页显示 20 50 100
Induced pluripotent stem cell-derived mesenchymal stem cells enhance acellular nerve allografts to promote peripheral nerve regeneration by facilitating angiogenesis
1
作者 Fan-Qi Meng Chao-Chao Li +14 位作者 Wen-Jing Xu Jun-Hao Deng Yan-Jun Guan Tie-Yuan Zhang Bo-Yao Yang Jian Zhang Xiang-Ling Li Feng Han Zhi-Qi Ren Shuai Xu Yan Liang Wen Jiang Jiang Peng Yu Wang Hai-Ying Liu 《Neural Regeneration Research》 2026年第5期2050-2059,共10页
Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells.However,adult tissue–derived mesenchymal stem cells en... Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells.However,adult tissue–derived mesenchymal stem cells encounter various obstacles,including limited tissue sources,invasive acquisition methods,cellular heterogeneity,purification challenges,cellular senescence,and diminished pluripotency and proliferation over successive passages.In this study,we used induced pluripotent stem cell-derived mesenchymal stem cells,known for their self-renewal capacity,multilineage differentiation potential,and immunomodulatory characteristics.We used induced pluripotent stem cell-derived mesenchymal stem cells in conjunction with acellular nerve allografts to address a 10 mm-long defect in a rat model of sciatic nerve injury.Our findings reveal that induced pluripotent stem cell-derived mesenchymal stem cells exhibit survival for up to 17 days in a rat model of peripheral nerve injury with acellular nerve allograft transplantation.Furthermore,the combination of acellular nerve allograft and induced pluripotent stem cell-derived mesenchymal stem cells significantly accelerates the regeneration of injured axons and improves behavioral function recovery in rats.Additionally,our in vivo and in vitro experiments indicate that induced pluripotent stem cell-derived mesenchymal stem cells play a pivotal role in promoting neovascularization.Collectively,our results suggest the potential of acellular nerve allografts with induced pluripotent stem cell-derived mesenchymal stem cells to augment nerve regeneration in rats,offering promising therapeutic strategies for clinical translation. 展开更多
关键词 acellular nerve allograft ANGIOGENESIS bioluminescence imaging conditioned medium induced pluripotent stem cell–derived mesenchymal stem cells micro-CT scanning Microfil perfusion peripheral nerve injury
暂未订购
Tip-enhanced Raman scattering of glucose molecules 被引量:3
2
作者 Zhonglin Xie Chao Meng +3 位作者 Donghua Yue Lei Xu Ting Mei Wending Zhang 《Opto-Electronic Science》 2025年第5期2-9,共8页
Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtain... Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis. 展开更多
关键词 tip-enhanced Raman scattering scanning near-field optical microscope fiber vector light field tip nanofocusing light source
在线阅读 下载PDF
Solidification modes and delta-ferrite of two types of 316L stainless steels:a combination of as-cast microstructure and HT-CLSM research 被引量:2
3
作者 Yang Wang Chao Chen +5 位作者 Xiao-yu Yang Zheng-rui Zhang Jian Wang Zhou Li Lei Chen Wang-zhong Mu 《Journal of Iron and Steel Research International》 2025年第2期426-436,共11页
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ... In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ). 展开更多
关键词 316L austenitic stainless steel As-cast microstructure High-temperature confocal laser scanning microscopy Solidification mode FERRITE Characterization
原文传递
In-situ observation and analysis of high temperature behavior of carbides in GCr15 bearing steel by confocal laser scanning microscopy 被引量:2
4
作者 Jun Ren Yue Teng +4 位作者 Xiang Liu Xi Xu Hui-gai Li Ke Han Qi-jie Zhai 《Journal of Iron and Steel Research International》 2025年第2期409-417,共9页
The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution ki... The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution kinetics of primary carbides during either heating or soaking.Dissolution of carbides proceeded in three stages(fast→slow→faster)as either temperature or holding time was increased.During the heating process and during the first and third stages of the soaking process,the original size of the carbides determined the steepness of the slope,but during the middle(“slow”)stage of the soaking process,the slope remained zero.The initial size of the carbides varied greatly,but their final dissolution temperature fell within the narrow range of 1210-1235℃,and the holding time remained within 50 min.Fractal analysis was used to study the morphological characteristics of small and medium-sized carbides during the dissolution process.According to changes in the fractal dimension before and after soaking,the carbides tended to evolve towards a more regular morphology. 展开更多
关键词 Bearing steel High-temperature confocal laser scanning microscope In-situ observation Primary carbide Fractal analysis
原文传递
Real-time monitoring and analysis of hydraulic fracturing in surface well using microseismic technology:Case insights and methodological advances 被引量:1
5
作者 Yanan Qian Ting Liu +6 位作者 Cheng Zhai Hongda Wen Yuebing Zhang Menghao Zheng Hexiang Xu Dongyong Xing Xinke Gan 《International Journal of Mining Science and Technology》 2025年第4期619-638,共20页
Through a case analysis,this study examines the spatiotemporal evolution of microseismic(MS)events,energy characteristics,volumetric features,and fracture network development in surface well hydraulic fracturing.A tot... Through a case analysis,this study examines the spatiotemporal evolution of microseismic(MS)events,energy characteristics,volumetric features,and fracture network development in surface well hydraulic fracturing.A total of 349 MS events were analyzed across different fracturing sections,revealing significant heterogeneity in fracture propagation.Energy scanning results showed that cumulative energy values ranged from 240 to 1060 J across the sections,indicating notable differences.Stimulated reservoir volume(SRV)analysis demonstrated well-developed fracture networks in certain sections,with a total SRV exceeding 1540000 m^(3).The hydraulic fracture network analysis revealed that during the midfracturing stage,the density and spatial extent of MS events significantly increased,indicating rapid fracture propagation and the formation of complex networks.In the later stage,the number of secondary fractures near fracture edges decreased,and the fracture network stabilized.By comparing the branching index,fracture length,width,height,and SRV values across different fracturing sections,Sections No.1 and No.8 showed the best performance,with high MS event densities,extensive fracture networks,and significant energy release.However,Sections No.4 and No.5 exhibited sparse MS activity and poor fracture connectivity,indicating suboptimal stimulation effectiveness. 展开更多
关键词 Hydraulic fracturing Microseismic Source location Energy scanning Fracture network
在线阅读 下载PDF
In-situ observation of nonmetallic inclusions in steel using confocal scanning laser microscopy:A review 被引量:1
6
作者 Ying Ren Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期975-991,共17页
The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are revi... The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions. 展开更多
关键词 INCLUSION STEEL in-situ observation confocal scanning laser microscopy
在线阅读 下载PDF
In-situ observation on dissolution of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions in refining slag 被引量:1
7
作者 Yu-die Gu Ying Ren Li-feng Zhang 《Journal of Iron and Steel Research International》 2025年第2期376-387,共12页
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(... The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers. 展开更多
关键词 INCLUSION Confocal laser scanning microscope Refining slag Dissolution kinetics
原文传递
Formation mechanism of W phase and its effects on the mechanical properties of Mg-Dy-Zn alloys 被引量:1
8
作者 J.S.Chen C.J.Ji +4 位作者 Q.Y.Huang Y.Z.Zeng H.B.Xie P.Chen B.Z.Sun 《Journal of Magnesium and Alloys》 2025年第5期2174-2189,共16页
The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the... The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys. 展开更多
关键词 Magnesium alloys Scanning transmission electron microscopy W particle Formation mechanism Mechanical properties
在线阅读 下载PDF
Segregation behaviors in{101^(-)1}compressive twin boundaries of Mg-RE alloy under deformation at room temperature 被引量:1
9
作者 Yujie Cui Lili Guo +6 位作者 Yunwei Gui Kenta Aoyagi Haotian Tong Qinqin Wei Fangzhou Liu Yuichiro Hayasaka Akihiko Chiba 《Journal of Magnesium and Alloys》 2025年第1期330-337,共8页
Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated... Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated the segregation behaviors of an Mg-RE alloy under deformation.We found that the enrichment of solute atoms occurred in{101^(-)1}compressive twin boundaries under compression at 298 K without any annealing in an Mg-RE alloy by scanning transmission electron microscopy and energy-dispersive X-ray analysis.The segregated solutes and precipitates impeded the twin growth,partially contributing to the formation of small-sized{101^(-)1}compressive twins.This research indicates the twin boundaries can be strengthened by segregated solutes and precipitates formed under deformation at room temperature. 展开更多
关键词 Magnesium alloys Compression test Scanning/transmission electron microscopy(STEM) SEGREGATION Twin boundaries
在线阅读 下载PDF
A centroid measurement method based on 3D scanning 被引量:1
10
作者 HE Xin LI Zhen 《Journal of Measurement Science and Instrumentation》 2025年第2期186-194,共9页
The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo... The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems. 展开更多
关键词 centroid measurement mass characteristic parameter 3D scanning 3D point cloud data no specialized positioning fixtures multi-point weighing method
在线阅读 下载PDF
Progress of research in the application of ultrasound technology for the treatment of Alzheimer’s disease
11
作者 Qiuquan Cai Lianghui Meng +5 位作者 Meina Quan Ling Wang Jing Ren Chenguang Zheng Jiajia Yang Dong Ming 《Neural Regeneration Research》 SCIE CAS 2025年第10期2823-2837,共15页
Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the dev... Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods. 展开更多
关键词 Alzheimer’s disease blood-brain barrier DRUGS magnetic resonance imaging-guided focused ultrasound MICROBUBBLES scanning ultrasound ULTRASOUND ultrasound stimulation
暂未订购
Illuminating the microscopic mysteries of enamel demineralization through terahertz near-field imaging
12
作者 XIAO Feng ZHANG Xiao-Qiu-Yan +6 位作者 CHENG Li XU Xing-Xing ZHANG Tian-Yu TANG Fu HU Tao HU Min LIU Sheng-Gang 《红外与毫米波学报》 北大核心 2025年第5期720-725,共6页
Enamel demineralization often occurs in the early stage of dental caries.Studying the microscopic mechanism of enamel demineralization is essential to prevent and treat dental caries.Terahertz(THz)technolo⁃gy,especial... Enamel demineralization often occurs in the early stage of dental caries.Studying the microscopic mechanism of enamel demineralization is essential to prevent and treat dental caries.Terahertz(THz)technolo⁃gy,especially continuous wave(CW)THz near-field scanning microscopy(THz-SNOM)with its nanoscale reso⁃lution,can be promising in biomedical imaging.In addition,compared with traditional THz time-domain spec⁃troscopy(TDS),portable solid-state source as the emission has higher power and SNR,lower cost,and can ob⁃tain more precise imaging.In this study,we employ CW THz-SNOM to further break the resolution limitations of conventional THz imaging techniques and successfully achieve the near-field imaging of demineralized enamel at the nanoscale.We keenly observe that the near-field signal of the enamel significantly lowers as demineralization deepens,mainly due to the decrease in permittivity.This new approach offers valuable insights into the micro⁃scopic processes of enamel demineralization,laying the foundation for further research and treatment. 展开更多
关键词 demineralized enamel near-field scanning microscopy continuous wave TERAHERTZ
在线阅读 下载PDF
Epitaxial growth of Bi nanowires on Pb-√7×√3surface
13
作者 Siyu Huo Jieying Li +8 位作者 Yuzhou Liu Desheng Cai Yitong Gu Haoen Chi Wenhui Pang Gan Yu Xiaoying Shi Wenguang Zhu Shengyong Qin 《Chinese Physics B》 2025年第10期504-509,共6页
Confining particles in one-dimensional(1D)systems profoundly modifies their electronic behaviors,which have been extensively demonstrated in carbon nanotubes and atomic chains.Structural instabilities and electron loc... Confining particles in one-dimensional(1D)systems profoundly modifies their electronic behaviors,which have been extensively demonstrated in carbon nanotubes and atomic chains.Structural instabilities and electron localizations often dominate the conductivity of 1D nanowires.Here,we successfully grew Bi single nanowires and nanowire arrays on Pb-√7×√3substrates via molecular beam epitaxy,both of which exhibit metallic behavior.Using scanning tunneling microscopy and first-principles density functional theory calculations,the interwire coupling and the correlation between nanowire bundles and electronic properties are investigated.A characteristic peak at 0.75 e V is observed on single wires and wire bundles of up to four nanowires,whereas interwire coupling weakens it and makes it disappear for wire bundles of five and above.These findings illustrate that the interwire coupling plays a critical role in the electronic structure of the1D system,which provides insights for the design of nano-electronics materials. 展开更多
关键词 one-dimensional system NANOWIRE molecular beam epitaxy scanning tunneling microscopy scanning tunneling spectroscopy interwire coupling LOCALIZATION
原文传递
Lushang Group’s“One Inventory”Strategy
14
作者 Zhang Weilun 《China's Foreign Trade》 2025年第3期60-65,共6页
In the self-built fruit and vegetable sorting warehouse of Lushang Group,the system is automatically scanning the QR code for agricultural product and conducts pesticide residue testing on fruits and vegetables;new pr... In the self-built fruit and vegetable sorting warehouse of Lushang Group,the system is automatically scanning the QR code for agricultural product and conducts pesticide residue testing on fruits and vegetables;new products from foreign trade factories will be directly transported to Ginza Supermarket through the“Direct Express for Domestic Product”channel,and will be shelved on the“Lushang Life”service platform within 48 hours;in front of the campus intelligent milk cabinet independently launched by Lushang Technology,students receive pasteurized milk by brushing their faces,and the data about milk source farms and sterilization parameters are sent to the parents simultaneously.This is the daily scenario of digital applications by Lushang Group’s full supply chain management. 展开更多
关键词 smart milk cabinet direct express channel pesticide residue testing scanning qr code QR code scanning intelligent milk cabinet inventory management agricultural product
在线阅读 下载PDF
An investigation of single-phased metallic solidification process using high-temperature confocal laser scanning microscope combined with differential scanning colorimetry
15
作者 Xing-zhi Zhou De-yong Wang +6 位作者 Tian-peng Qu Dong Hou Shao-yan Hu Jun Tian Xiang-long Li Lei Fan Zhi-xiao Zhang 《Journal of Iron and Steel Research International》 2025年第2期437-451,共15页
To investigate the nucleation behavior during the single-phased metallic solidification process,the commercial ultrapure ferritic stainless steels with no(Initial steel)and various melt treatments(R1,MR1,Y2,MY1,and M1... To investigate the nucleation behavior during the single-phased metallic solidification process,the commercial ultrapure ferritic stainless steels with no(Initial steel)and various melt treatments(R1,MR1,Y2,MY1,and M1 steels)were used to carry out the differential scanning colorimetry(DSC)and high-temperature confocal laser scanning microscope(HT-CLSM)experiments.Based on the results of DSC experiments,the equilibrium solidification process as well as the relationship among the critical undercooling degree(△T_(c)^(DSC)),latent heat of fusion/crystallization(△H_(f)/△H_(c)),equiaxed grain ratio(ER),and average grain size(△_(ave)^(ingot))was revealed.ER is increased with the decreasing△T_(c)^(DSC)and increasing△H_(f)/△H_(c);however,△_(ave)^(ingot)is decreased with them.Referring to the results of HT-CLSM experiments,the average sizes of micro-/macrostructures(d_(ave)/D_(ave)/)are decreased with the increasing cooling rate,as well as the difference between and apparent critical undercooling degree(△T_(c)^(CLSM))was revealed.The heterogeneous nucleation of the crystal nuclei occurs only if△T_(c)^(CLSM)>△T_(c)^(DSC).Combining with the interfacial wetting-lattice mismatch heterogeneous nucleation model,the dynamic mechanism of the metallic solidification was revealed.The as-cast grains of the melt-treated samples were obviously refined,owing to the much higher actual heterogeneous nucleation rates(I_(heter.,i))obtained through melt treatments,and the heterogeneous nucleation rates(I_(heter.,ij))for all samples are increased with the cooling rates,firmly confirming that the as-cast grains of each sample could be refined by the increasing cooling rates. 展开更多
关键词 NUCLEATION Metallic solidification process Differential scanning colorimetry High-temperature confocal laser scanning microscope Interfacial wetting-lattice mismatch heterogeneous nucleation model
原文传递
Monitoring the Oil Tank Deformations for Different Operating Conditions
16
作者 Roman Shults Natalia Kulichenko +1 位作者 Andriy Annenkov Oleksandr Adamenko 《Structural Durability & Health Monitoring》 2025年第6期1433-1456,共24页
Oil tanks are essential components of the oil industry, facilitating the safe storage and transportation of crude oil. Safely managing oil tanks is a crucial aspect of environmental protection. Oil tanks are often use... Oil tanks are essential components of the oil industry, facilitating the safe storage and transportation of crude oil. Safely managing oil tanks is a crucial aspect of environmental protection. Oil tanks are often used under extreme operational conditions, including dynamic loads, temperature variations, etc., which may result in unpredictable deformations that can cause severe damage or tank collapses. Therefore, it is essential to establish a monitoring system to prevent and predict potential deformations. Terrestrial laser scanning (TLS) has played a significant role in oil tank monitoring over the past decades. However, the full extent of TLS capabilities for oil tank monitoring has not yet been thoroughly investigated. This study aims to evaluate TLS’s abilities in detecting deformations of oil tanks under various operating conditions. The paper has two objectives: first, to examine the deformations of two vertical oil tanks over six years, and second, to investigate potential deformations of the tanks’ surfaces during filling. Each tank was scanned three times—in the years 2015, 2016, and 2021. Mathematical models and appropriate software were developed to determine the achievable accuracy of TLS monitoring. The anticipated monitoring accuracy was simulated based on the design parameters of the oil tanks. This accuracy was subsequently used to differentiate between deformations and measurement errors. The tank surface was approximated utilizing the cylinder equation for each monitoring epoch. Additionally, deformations were analyzed at different cross-sections with the appropriate circular approximations. The results indicated that both tanks exhibited no significant deformations within a range of less than 20 mm. For the empty tanks, the average radius decreased by 4 mm, without any changes in shape. The total spatial inclination of the oil tanks was calculated using cylinder equations at different monitoring epochs. In the final stage, the observed deformations were employed to simulate the strain-stress conditions of the oil tanks. Thus, this paper presents a complex technology and the results of oil tank monitoring by TLS under various operating conditions. 展开更多
关键词 Terrestrial laser scanning DEFORMATION CYLINDER FITTING ACCURACY FEM simulation INCLINATION
在线阅读 下载PDF
Phase waves of local depolarization in biological tissues object speckle fields.Fundamental and applied aspects
17
作者 Yurii Ushenko Alexander Ushenko +9 位作者 Alexander Dubolazov Mykhaylo Gorsky Irina Soltys Olexandra Litvinenko Victor Bachinsky Ivan Mikirin Olexander Salega Ivan Garasim Jun Zheng Lin Bin 《Journal of Innovative Optical Health Sciences》 2025年第5期113-133,共21页
Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and ... Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%. 展开更多
关键词 olarization DEPOLARIZATION interference phase scanning optical anisotropy BIREFRINGENCE biological tissue myocardium.
原文传递
Fabrication and application of SiNWs based PANI:MOx heterostructures for human respiratory monitoring
18
作者 Muhammad Taha Sultan Anca Dumitru +4 位作者 Elham Fakhri Rachel Brophy Snorri Thorgeir Ingvarsson Andrei Manolescu Halldor Gudfinur Svavarsson 《Journal of Semiconductors》 2025年第3期48-60,共13页
In this study,we investigate an innovative hybrid structure of silicon nanowires(SiNWs)coated with polyaniline(PANI):metal oxide(MO_(x))nanoparticles,i.e.,WO_(3)and TiO_(2),for respiratory sensing.To date,few attempts... In this study,we investigate an innovative hybrid structure of silicon nanowires(SiNWs)coated with polyaniline(PANI):metal oxide(MO_(x))nanoparticles,i.e.,WO_(3)and TiO_(2),for respiratory sensing.To date,few attempts have been made to utilize such hybrid structures for that application.The Si NWs were fabricated using metal-assisted chemical etching(MACE),whereas PANI:MO_(x)was deposited using chemical oxidative polymerization.The structures were characterized using Raman spectroscopy,X-ray diffraction,and scanning electron microscopy.The sensing characteristics revealed that the hybrid sensor exhibited a considerably better response than pure Si NWs:MO_(x)and Si NWs:PANI.Such an enhancement in sensitivity is attributed to the formation of a p-n heterojunction between PANI and MO_(x),the wider conduction channel provided by PANI,increased porosity in SiNWs/PANI:WO_(3)hybrid structures,which creates active sites,increased oxygen vacancies,and the large surface area compared to that available in pure MO_(x)nanoparticles.Furthermore,less baseline drift and increased sensor stability were established for the SiNWs structure coated with PANI:WO_(3),as compared to PANI:TiO_(2). 展开更多
关键词 SiNWs metal oxides sensor XRD Raman spectroscopy scanning electron micrscopy
在线阅读 下载PDF
Single-Dislocation Phonons:Atomic-Scale Measurement and Their Thermal Properties
19
作者 Yue-Hui Li Bo Han +12 位作者 Xiao-Long Yang Rui-Lin Mao Fa-Chen Liu Ruo-Chen Shi Rui-Shi Qi Xiao-Rui Hao Ning Li Bing-Yao Liu Xiao-Mei Li Jin-Long Du Ji Chen Wu Li Peng Gao 《Chinese Physics Letters》 2025年第6期110-139,共30页
Nanoscale defects such as dislocations have a significant impact on the phonon thermal transport properties in non-metallic materials.To unravel these effects,an understanding of defect phonon modes is essential.Herei... Nanoscale defects such as dislocations have a significant impact on the phonon thermal transport properties in non-metallic materials.To unravel these effects,an understanding of defect phonon modes is essential.Herein,at the atomic scale,the localized phonons of individual dislocations at a Si/Ge interface are measured via monochromated electron energy loss spectroscopy in a scanning transmission electron microscope.These modes are then correlated with the local microstructure,further revealing the dislocation effects on the local thermal transport properties.The dislocation causes a phonon redshift of several milli-electron-volts within about two to four nanometers of the core,where both the strain field and Ge segregation play roles.With the presence of dislocation,the local interfacial thermal conductance can be either enhanced or reduced,depending on the complex interaction and competition between lattice disorder(dislocation)and element disorder(heterointerface mixing and Ge-segregation)at the interface.These findings provide valuable insights to improve the thermal properties of thermoelectric generators and thermal management systems through proper defect engineering. 展开更多
关键词 localized phonons defect phonon modes scanning transmission electron microscopethese single dislocation phonons phonon thermal transport properties thermal transport properties monochromated electron energy loss spectroscopy scanning transmission electron microscope
原文传递
Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy
20
作者 Yutong Xiong Ting Meng +3 位作者 Wendi Luo Bin Tu Shuai Wang Qingdao Zeng 《Chinese Journal of Structural Chemistry》 2025年第2期57-61,共5页
The assembly behaviors of two low-symmetric carboxylic acid molecules(50-(6-carboxynaphthalen-2-yl)-[1,10:30,100-triphenyl]-3,400,5-tricarboxylic acid(CTTA)and 30,50-bis(6-carboxynaphthalen-2-yl)-[1,10-biphenyl]-3,5-d... The assembly behaviors of two low-symmetric carboxylic acid molecules(50-(6-carboxynaphthalen-2-yl)-[1,10:30,100-triphenyl]-3,400,5-tricarboxylic acid(CTTA)and 30,50-bis(6-carboxynaphthalen-2-yl)-[1,10-biphenyl]-3,5-dicarboxylic acid(BCBDA))containing naphthalene rings on graphite surfaces have been investigated using scanning tunneling microscopy(STM).The transformation of nanostructures induced by the second components(EDA and PEBP-C4)have been also examined.Both CTTA and BCBDA molecules self-assemble at the 1-heptanoic acid(HA)/HOPG interface,forming porous network structures.The dimer represents the most elementary building unit due to the formation of double hydrogen bonds.Moreover,the flipping of naphthalene ring results in the isomerization of BCBDA molecule.The introduction of carboxylic acid derivative EDA disrupts the dimer,which subsequently undergoes a structural conformation to form a novel porous structure.Furthermore,upon the addition of pyridine derivative PEBP-C4,N–H⋯O hydrogen bonds are the dominant forces driving the three coassembled structures.We have also conducted density functional theory(DFT)calculations to determine the molecular conformation and analyze the mechanisms underlying the formation of nanostructures. 展开更多
关键词 Co-assembly CONFORMATION Hydrogen bonds Scanning tunneling microscopy DFT calculations
原文传递
上一页 1 2 100 下一页 到第
使用帮助 返回顶部