Conventional methods for near-field characterization have typically relied on the nanoprobe to point-scan the field,rendering the measurements vulnerable to external environmental influences.Here,we study the direct f...Conventional methods for near-field characterization have typically relied on the nanoprobe to point-scan the field,rendering the measurements vulnerable to external environmental influences.Here,we study the direct far-field imaging of the near-field polarizations based on the four-wave mixing effect.We construct a simulation model to realize the instantaneous extraction of the near-field distributions of a wide range of structured light fields,such as cylindrical vector vortex beams,plasmonic Weber beams,and topological spin textures,including photonic skyrmions and merons.This method is valuable for the studies on manipulation of structured light fields and light-matter interaction at the micro/nano scales.展开更多
基金supported by the Guangdong Major Project of Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.62075139,61935013,and 12004260)+4 种基金the Natural Science Foundation of Guangdong(No.2024A1515012503)the Innovation Team Project of Ordinary University of Guangdong Provincial Education Bureau(No.2024KCXTD014)the Shenzhen Science and Technology Program(Nos.RCJC20200714114435063 and JCYJ20241202124532024)the Research Team Cultivation Program of Shenzhen University(No.2023QNT012)the Shenzhen University 2035 Initiative(No.2023B004)。
文摘Conventional methods for near-field characterization have typically relied on the nanoprobe to point-scan the field,rendering the measurements vulnerable to external environmental influences.Here,we study the direct far-field imaging of the near-field polarizations based on the four-wave mixing effect.We construct a simulation model to realize the instantaneous extraction of the near-field distributions of a wide range of structured light fields,such as cylindrical vector vortex beams,plasmonic Weber beams,and topological spin textures,including photonic skyrmions and merons.This method is valuable for the studies on manipulation of structured light fields and light-matter interaction at the micro/nano scales.