The efficiency of the aircraft Ice Protection Systems(IPSs)needs to be verified through icing wind tunnel tests.However,the scaling method for testing the IPSs has not been systematically established yet,and further r...The efficiency of the aircraft Ice Protection Systems(IPSs)needs to be verified through icing wind tunnel tests.However,the scaling method for testing the IPSs has not been systematically established yet,and further research is needed.In the present study,a scaling method specifically designed for thermal IPSs was derived from the governing equation of thin water film.Five scaling parameters were adopted to address the heat and mass transfer involved in the thermal anti-icing process.For method validation,icing wind tunnel tests were conducted using a jet engine nacelle model equipped with a bleed air IPS.The non-dimensional surface temperature and runback ice closely matched for both the reference and scaled conditions.The validation confirms that the scaling method is capable of achieving the similarity of surface temperature and the runback ice coverage.The anti-icing scaling method can serve as an important supplement to the existing icing similarity theory.展开更多
Because the physiological characteristics and melanin regulation mechanism of zebrafish are highly similar with those of humans,it is of high reference value to use zebrafish model in the evaluation of cosmetic whiten...Because the physiological characteristics and melanin regulation mechanism of zebrafish are highly similar with those of humans,it is of high reference value to use zebrafish model in the evaluation of cosmetic whitening efficacy.In this study,zebrafish embryos are used as biological models to evaluate the whitening efficacy of six kinds of cosmetics raw materials,such as antioxidant,preservative and essence,and the formula of facial cleanser and facial mask products,and the limitations of the zebrafish melanin production grayscale detection method in practical application are discussed.The results show that the selection of different types of components can also reduce the production of melanin and show whitening effect.It can be seen that the gray scale method of melanin production in zebrafish is suitable for the evaluation of the efficacy of raw materials.In practical application,due to the complexity of the formula,the toxic effects of different types of ingredients may interfere with the melanin generation of zebrafish,affecting the judgment and evaluation of whitening efficacy.For the detection of whitening efficacy of products,a comprehensive evaluation system should be built together with other methods to accurately evaluate the whitening efficacy.展开更多
Using a linear scaling self-consistent-charge density functional tight binding (SCC-DFTB) and an ab initio Omol method, the bonding characteristics and Young's modulus of (10, 0) and (10,10) single-walled carbo...Using a linear scaling self-consistent-charge density functional tight binding (SCC-DFTB) and an ab initio Omol method, the bonding characteristics and Young's modulus of (10, 0) and (10,10) single-walled carbon nanotubes are calculated. The structure of a graphene is also calculated. It is found that the C-C and C-H bond length, their distribution characteristics on the tube, and Young^s modulus of the tube by linear scaling SCC-DFTB are identical to those by ab initio, while the computing cost by the linear scaling SCC-DFTB is reduced by more than 30 times as compared with that by the Dmol for the (10,0) and (10,10) tubes. By computing the structure of a graphene it is also found that the linear scaling SCCDFTB is reliable and time-saving.展开更多
This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of...This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations.展开更多
The solution to heat transfer problems in two-dimensional heterogeneous media is attended based on the scaled boundary finite element method(SBFEM)coupled with equilibrated basis functions(EqBFs).The SBFEM reduces the...The solution to heat transfer problems in two-dimensional heterogeneous media is attended based on the scaled boundary finite element method(SBFEM)coupled with equilibrated basis functions(EqBFs).The SBFEM reduces the model order by scaling the boundary solution onto the inner element.To this end,tri-lateral elements are emanated from a scaling center,followed by the development of a semi-analytical solution along the radial direction and a finite element solution along the circumferential/boundary direction.The discretization is thus limited to the boundaries of the model,and the semi-analytical radial solution is found through the solution of an eigenvalue problem,which restricts the methods’applicability to heterogeneous media.In this research,we first extracted the SBFEM formulation considering the heterogeneity of the media.Then,we replaced the semi-analytical radial solution with the EqBFs and removed the eigenvalue solution step from the SBFEM.The varying coefficients of the partial differential equation(PDE)resulting from the heterogeneity of the media are replaced by a finite series in the radial and circumferential directions of the element.A weighted residual approach is applied to the radial equation.The equilibrated radial solution series is used in the new formulation of the SBFEM.展开更多
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic...For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.展开更多
This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are glob...This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.展开更多
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ...Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.展开更多
A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scale...A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scaled boundary equations with the moving Kriging (MK) interpolation to retain the dimensionality advantage of the former and the meshless attribute of the latter. As a result, the SBNM requires only a set of scattered nodes on the boundary, and the displacement field is approximated by using the MK interpolation technique, which possesses the 5 function property. This makes the developed method efficient and straightforward in imposing the essential boundary conditions, and no special treatment techniques are required. Besides, the SBNM works by weakening the governing differential equations in the circumferential direction and then solving the weakened equations analytically in the radial direction. Therefore, the SBNM permits an accurate representation of the singularities in the radial direction when the scaling center is located at the crack tip. Numerical examples using the SBNM for computing the SIFs are presented. Good agreements with available results in the literature are obtained.展开更多
In this investigation,some different approaches are implemented for analyzing a generalized forced damped complex Duffing oscillator,including the hybrid homotopy perturbation method(H-HPM),which is sometimes called t...In this investigation,some different approaches are implemented for analyzing a generalized forced damped complex Duffing oscillator,including the hybrid homotopy perturbation method(H-HPM),which is sometimes called the Krylov-Bogoliubov-Mitropolsky(KBM)method and the multiple scales method(MSM).All mentioned methods are applied to obtain some accurate and stable approximations to the proposed problem without decoupling the original problem.All obtained approximations are discussed graphically using different numerical values to the relevant parameters.Moreover,all obtained approximate solutions are compared with the 4thorder Runge-Kutta(RK4)numerical approximation.The maximum residual distance error(MRDE)is also estimated,in order to verify the high accuracy of the obtained analytic approximations.展开更多
In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deduc...In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.展开更多
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot...The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.展开更多
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe...The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.展开更多
An aliasing effect brought up by mass assignment onto Fast Fourier Transformation (FFT) grids may bias measurement of the power spectrum of large scale structures. In this paper, based on the Beylkin's unequally sp...An aliasing effect brought up by mass assignment onto Fast Fourier Transformation (FFT) grids may bias measurement of the power spectrum of large scale structures. In this paper, based on the Beylkin's unequally spaced FFT technique, we propose a new precise method to extract the true power spectrum of a large discrete data set. We compare the traditional mass assignment schemes with the new method using the Daub6 and the 3rd-order B-spline scaling functions. Our measurement of Poisson samples and samples of N-body simulations shows that the B-spline scaling function is an optimal choice for mass assignment in the sense that (1) it has a compact support in real space and thus yields an efficient algorithm (2) without any extra corrections. The Fourier space behavior of the 3rd-order B-spline scaling function enables it to be able to accurately recover the true power spectrum with errors less than 5% up to k 〈 kN. It is expected that such a method can be applied to higher order statistics in Fourier space and will enable us to have a precision capture of the non-Gaussian features in the large scale structure of the universe.展开更多
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre...The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.展开更多
Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth ...Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.展开更多
A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ...A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.展开更多
The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolve...The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolves, it is demonstrated to develop computational multiscale methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales,respectively. The computational homogenization method and the bridge scale method along the concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu-Washizu variational principle, the mixed finite element procedure of gradient Cosserat continuum in the frame of the second-order homogenization scheme is developed. The meso-mechanically informed anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic mechanisms of macroscopic damage phenomenon are revealed. c 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301101]展开更多
We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatia...We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.展开更多
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique that combines the advantages of the finite element method and the boundary element method with unique properties of its own. Thi...The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique that combines the advantages of the finite element method and the boundary element method with unique properties of its own. This method has proven very efficient and accurate for determining the stress intensity factors (SIFs) for mode I and mode II two-dimensional crack problems. One main reason is that the SBFEM has a unique capacity of analytically representing the stress singularities at the crack tip. In this paper the SBFEM is developed for mode III (out of plane deformation) two-dimensional fracture anMysis. In addition, cubic B-spline functions are employed in this paper for constructing the shape functions in the circumferential direction so that higher continuity between elements is obtained. Numerical examples are presented at the end to demonstrate the simplicity and accuracy of the present approach for mode Ⅲ two-dimensional fracture analysis.展开更多
基金supported by the National Major Science and Technology Projects of China(J2019-Ⅲ-0010-0054).
文摘The efficiency of the aircraft Ice Protection Systems(IPSs)needs to be verified through icing wind tunnel tests.However,the scaling method for testing the IPSs has not been systematically established yet,and further research is needed.In the present study,a scaling method specifically designed for thermal IPSs was derived from the governing equation of thin water film.Five scaling parameters were adopted to address the heat and mass transfer involved in the thermal anti-icing process.For method validation,icing wind tunnel tests were conducted using a jet engine nacelle model equipped with a bleed air IPS.The non-dimensional surface temperature and runback ice closely matched for both the reference and scaled conditions.The validation confirms that the scaling method is capable of achieving the similarity of surface temperature and the runback ice coverage.The anti-icing scaling method can serve as an important supplement to the existing icing similarity theory.
文摘Because the physiological characteristics and melanin regulation mechanism of zebrafish are highly similar with those of humans,it is of high reference value to use zebrafish model in the evaluation of cosmetic whitening efficacy.In this study,zebrafish embryos are used as biological models to evaluate the whitening efficacy of six kinds of cosmetics raw materials,such as antioxidant,preservative and essence,and the formula of facial cleanser and facial mask products,and the limitations of the zebrafish melanin production grayscale detection method in practical application are discussed.The results show that the selection of different types of components can also reduce the production of melanin and show whitening effect.It can be seen that the gray scale method of melanin production in zebrafish is suitable for the evaluation of the efficacy of raw materials.In practical application,due to the complexity of the formula,the toxic effects of different types of ingredients may interfere with the melanin generation of zebrafish,affecting the judgment and evaluation of whitening efficacy.For the detection of whitening efficacy of products,a comprehensive evaluation system should be built together with other methods to accurately evaluate the whitening efficacy.
基金support by Program for Changjing Schol-ars and Innovative Research Team in University(PSCIRT0720)
文摘Using a linear scaling self-consistent-charge density functional tight binding (SCC-DFTB) and an ab initio Omol method, the bonding characteristics and Young's modulus of (10, 0) and (10,10) single-walled carbon nanotubes are calculated. The structure of a graphene is also calculated. It is found that the C-C and C-H bond length, their distribution characteristics on the tube, and Young^s modulus of the tube by linear scaling SCC-DFTB are identical to those by ab initio, while the computing cost by the linear scaling SCC-DFTB is reduced by more than 30 times as compared with that by the Dmol for the (10,0) and (10,10) tubes. By computing the structure of a graphene it is also found that the linear scaling SCCDFTB is reliable and time-saving.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,grant No(44-PRFA-P-107).
文摘This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations.
文摘The solution to heat transfer problems in two-dimensional heterogeneous media is attended based on the scaled boundary finite element method(SBFEM)coupled with equilibrated basis functions(EqBFs).The SBFEM reduces the model order by scaling the boundary solution onto the inner element.To this end,tri-lateral elements are emanated from a scaling center,followed by the development of a semi-analytical solution along the radial direction and a finite element solution along the circumferential/boundary direction.The discretization is thus limited to the boundaries of the model,and the semi-analytical radial solution is found through the solution of an eigenvalue problem,which restricts the methods’applicability to heterogeneous media.In this research,we first extracted the SBFEM formulation considering the heterogeneity of the media.Then,we replaced the semi-analytical radial solution with the EqBFs and removed the eigenvalue solution step from the SBFEM.The varying coefficients of the partial differential equation(PDE)resulting from the heterogeneity of the media are replaced by a finite series in the radial and circumferential directions of the element.A weighted residual approach is applied to the radial equation.The equilibrated radial solution series is used in the new formulation of the SBFEM.
文摘For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.
文摘This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.
基金the State Key Program of National Natural Science of China under Grant No.51138001Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No.51121005Open Research Fund Program of State key Laboratory of Hydro science and Engineering under Grant No.shlhse-2010-C-03
文摘Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11002054)
文摘A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scaled boundary equations with the moving Kriging (MK) interpolation to retain the dimensionality advantage of the former and the meshless attribute of the latter. As a result, the SBNM requires only a set of scattered nodes on the boundary, and the displacement field is approximated by using the MK interpolation technique, which possesses the 5 function property. This makes the developed method efficient and straightforward in imposing the essential boundary conditions, and no special treatment techniques are required. Besides, the SBNM works by weakening the governing differential equations in the circumferential direction and then solving the weakened equations analytically in the radial direction. Therefore, the SBNM permits an accurate representation of the singularities in the radial direction when the scaling center is located at the crack tip. Numerical examples using the SBNM for computing the SIFs are presented. Good agreements with available results in the literature are obtained.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number RI-44-0143
文摘In this investigation,some different approaches are implemented for analyzing a generalized forced damped complex Duffing oscillator,including the hybrid homotopy perturbation method(H-HPM),which is sometimes called the Krylov-Bogoliubov-Mitropolsky(KBM)method and the multiple scales method(MSM).All mentioned methods are applied to obtain some accurate and stable approximations to the proposed problem without decoupling the original problem.All obtained approximations are discussed graphically using different numerical values to the relevant parameters.Moreover,all obtained approximate solutions are compared with the 4thorder Runge-Kutta(RK4)numerical approximation.The maximum residual distance error(MRDE)is also estimated,in order to verify the high accuracy of the obtained analytic approximations.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871386,61971427,62035014,and 61921001)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(Grant No.2019JJ20022)。
文摘In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.
基金Project supported by the National Natural Science Foundation of China (Grant No.10472060)
文摘The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.
基金The project supported by the National Natural Science Foundation of China (50579081)the Australian Research Council (DP0452681)The English text was polished by Keren Wang
文摘The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
基金Supported by the National Natural Science Foundation of ChinaThis work is supported by the National Science Foundation of China through grants 10373012, 10633049, 10643002 the 973 program under No. 2007CB815402.
文摘An aliasing effect brought up by mass assignment onto Fast Fourier Transformation (FFT) grids may bias measurement of the power spectrum of large scale structures. In this paper, based on the Beylkin's unequally spaced FFT technique, we propose a new precise method to extract the true power spectrum of a large discrete data set. We compare the traditional mass assignment schemes with the new method using the Daub6 and the 3rd-order B-spline scaling functions. Our measurement of Poisson samples and samples of N-body simulations shows that the B-spline scaling function is an optimal choice for mass assignment in the sense that (1) it has a compact support in real space and thus yields an efficient algorithm (2) without any extra corrections. The Fourier space behavior of the 3rd-order B-spline scaling function enables it to be able to accurately recover the true power spectrum with errors less than 5% up to k 〈 kN. It is expected that such a method can be applied to higher order statistics in Fourier space and will enable us to have a precision capture of the non-Gaussian features in the large scale structure of the universe.
基金Supported by the Key Program of National Natural Science Foundation of China(No.51138001)the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51121005)+2 种基金the Fundamental Research Funds for the Central Universities(DUT13LK16)the Young Scientists Fund of National Natural Science Foundation of China(No.51109134)China Postdoctoral Science Foundation(No.2011M500814)
文摘The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
基金the National Natural Science Foundation of China(Grant Nos.12074265 and 11804233).
文摘Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Project(CXLX12_0949) supported by Research and Innovation Project for College Graduates of Jiangsu Province, ChinaProject(2013DXS03) supported by the Fundamental Research Funds for the Central Universities, China
文摘A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.
基金supported by the National Natural Science Foundation of China(11072046,10672033,90715011 and 11102036)the National Basic Research and Development Program(973Program,2010CB731502)
文摘The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolves, it is demonstrated to develop computational multiscale methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales,respectively. The computational homogenization method and the bridge scale method along the concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu-Washizu variational principle, the mixed finite element procedure of gradient Cosserat continuum in the frame of the second-order homogenization scheme is developed. The meso-mechanically informed anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic mechanisms of macroscopic damage phenomenon are revealed. c 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301101]
文摘We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.
基金supported by the National Natural Science Foundation of China(No.11002054)
文摘The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique that combines the advantages of the finite element method and the boundary element method with unique properties of its own. This method has proven very efficient and accurate for determining the stress intensity factors (SIFs) for mode I and mode II two-dimensional crack problems. One main reason is that the SBFEM has a unique capacity of analytically representing the stress singularities at the crack tip. In this paper the SBFEM is developed for mode III (out of plane deformation) two-dimensional fracture anMysis. In addition, cubic B-spline functions are employed in this paper for constructing the shape functions in the circumferential direction so that higher continuity between elements is obtained. Numerical examples are presented at the end to demonstrate the simplicity and accuracy of the present approach for mode Ⅲ two-dimensional fracture analysis.