The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropica...The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis(2000) was selected as the case to study.The research data used are from the results of the non-hydrostatic mesoscale model(MM5),which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm.The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end.It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak,sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression,with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation.The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression.The depression was strengthened by cross-equatorial surges,which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.展开更多
基金sponsored by the National Program on Key Basic Research Project(973 Program) under Grant No.2009CB421500the National Natural Science Foundation of China under Grant No.40675026.
文摘The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis(2000) was selected as the case to study.The research data used are from the results of the non-hydrostatic mesoscale model(MM5),which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm.The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end.It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak,sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression,with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation.The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression.The depression was strengthened by cross-equatorial surges,which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.