Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d...This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in...We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.展开更多
With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential atta...With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential attachment is researched to solve an actual network CCN (Cooperative Communication Network). Firstly, the evolution of CCN is given by four steps with different probabilities. At the same time, the rate equations of nodes degree are presented to analyze the evolution of CCN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation. Finally, the robustness of CCN is studied by numerical simulation with random attack and intentional attack to analyze the effects of degree distribution and average path length. The results of this paper are more significant for building CCN to programme the resource of communication.展开更多
In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its...In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.展开更多
In this paper a new model for the spread of sexually transmitted diseases (STDs) is presented. The dynamic behaviors of the model on a heterogenons scale-free (SF) network are considered, where the absence of a th...In this paper a new model for the spread of sexually transmitted diseases (STDs) is presented. The dynamic behaviors of the model on a heterogenons scale-free (SF) network are considered, where the absence of a threshold on the SF network is demonstrated, and the stability of the disease-free equilibrium is obtained. Three immunization strategies, uniform immunization, proportional immunization and targeted immunization, are applied in this model. Analytical and simulated results are given to show that the proportional immunization strategy in the model is effective on SF networks.展开更多
A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behavi...A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.展开更多
Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The e...Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.展开更多
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d...With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.展开更多
A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The resul...A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence εc, separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change Oc(t) quickly decreases in an exponential form, while if it reaches the incoherent state finally, Oc(t) decreases slowly and has the punctuated equilibrium characteristic.展开更多
In this paper, a dynamic epidemic control model on the uncorrelated complex networks is proposed. By means of theoretical analysis, we found that the new model has a similar epidemic threshold as that of the susceptib...In this paper, a dynamic epidemic control model on the uncorrelated complex networks is proposed. By means of theoretical analysis, we found that the new model has a similar epidemic threshold as that of the susceptible-infectedrecovered (SIR) model on the above networks, but it can reduce the prevalence of the infected individuals remarkably. This result may help us understand epidemic spreading phenomena on real networks and design appropriate strategies to control infections.展开更多
In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability t...In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.展开更多
In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective sprea...In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Purthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection.展开更多
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal co...The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.展开更多
This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolut...This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.展开更多
Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different a...Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different aspects.To explore the impact of location information in depth,this paper proposes an improved global structure model to characterize the influence of nodes.The method considers both the node’s self-information and the role of the location information of neighboring nodes.First,degree centrality of each node is calculated,and then degree value of each node is used to represent self-influence,and degree values of the neighbor layer nodes are divided by the power of the path length,which is path attenuation used to represent global influence.Finally,an extended improved global structure model that considers the nearest neighbor information after combining self-influence and global influence is proposed to identify influential nodes.In this paper,the propagation process of a real network is obtained by simulation with the SIR model,and the effectiveness of the proposed method is verified from two aspects of discrimination and accuracy.The experimental results show that the proposed method is more accurate in identifying influential nodes than other comparative methods with multiple networks.展开更多
The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global...The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global ocean dynamic via constructing a complex network with regard to sea surface temperature. The global ocean is divided into discrete regions to represent the nodes of the network. To understand the ocean dynamic behavior, we introduce the Gaussian mixture models to describe the nodes as limit-cycle oscillators. The interacting dynamical oscillators form the complex network that simulates the ocean as a stochastic system. Gaussian probability matching is suggested to measure the behavior similarity of regions. Complex network statistical characteristics of the network are analyzed in terms of degree distribution, clustering coefficient and betweenness. Experimental results show a pronounced sensitivity of network characteristics to the climatic anomaly in the oceanic circulation. Particularly, the betweenness reveals the main pathways to transfer thermal energy of El Niño–Southern oscillation. Our works provide new insights into the physical processes of ocean dynamic, as well as climate changes and ocean anomalies.展开更多
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金Project supported the Natural Science Foundation of Zhejiang Province, China (Grant No. LQN25F030011)the Fundamental Research Project of Hangzhou Dianzi University (Grant No. KYS065624391)+1 种基金the National Natural Science Foundation of China (Grant No. 61573148)the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2019A050520001)。
文摘This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
基金Supported by the National Natural Science Foundation of China (90204012, 60573036) and the Natural Science Foundation of Hebei Province (F2006000177)
文摘We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.
基金Project supported by the Natural Science Foundation of Beijing(Grant No.4152035)the National Natural Science Foundation of China(Grant No.61272507)
文摘With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential attachment is researched to solve an actual network CCN (Cooperative Communication Network). Firstly, the evolution of CCN is given by four steps with different probabilities. At the same time, the rate equations of nodes degree are presented to analyze the evolution of CCN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation. Finally, the robustness of CCN is studied by numerical simulation with random attack and intentional attack to analyze the effects of degree distribution and average path length. The results of this paper are more significant for building CCN to programme the resource of communication.
文摘In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.
文摘In this paper a new model for the spread of sexually transmitted diseases (STDs) is presented. The dynamic behaviors of the model on a heterogenons scale-free (SF) network are considered, where the absence of a threshold on the SF network is demonstrated, and the stability of the disease-free equilibrium is obtained. Three immunization strategies, uniform immunization, proportional immunization and targeted immunization, are applied in this model. Analytical and simulated results are given to show that the proportional immunization strategy in the model is effective on SF networks.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of Ministry of Education of China
文摘A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.
基金Project supported by the Natural Science Foundation of the Education Department of Guizhou Province,China (Grant No.20090133)International Cooperative Foundation of Guizhou Province,China (Grant No.20117007)
文摘Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.
基金Project supported by the National Natural Science Foundation of China(Grant No.T2293771)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB705500, the National Natural Science Foundation of China under Grant Nos 10635040, 10532060, 70571074 and 10472116, the Special Research Funds for Theoretical Physics Frontier Problems (A0524701), the President Fund of Chinese Academy of Sciences, the Specialized Research Fund for the Doctoral Programme of Higher Education of China, and the Research Fund of the Education Department of Liaoning Province (20060140). The authors thank Dr Ming Zhao for her comments and suggestions.
文摘A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence εc, separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change Oc(t) quickly decreases in an exponential form, while if it reaches the incoherent state finally, Oc(t) decreases slowly and has the punctuated equilibrium characteristic.
基金Project supported by the National Natural Science Foundation of China (Grant No.60774088)the Program for New Century Excellent Talents of Higher Education of China (Grant No NCET 2005-290)the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050055013)
文摘In this paper, a dynamic epidemic control model on the uncorrelated complex networks is proposed. By means of theoretical analysis, we found that the new model has a similar epidemic threshold as that of the susceptible-infectedrecovered (SIR) model on the above networks, but it can reduce the prevalence of the infected individuals remarkably. This result may help us understand epidemic spreading phenomena on real networks and design appropriate strategies to control infections.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179 and 11875042)the Natural Science Foundation of Shanghai Municipality,China(Grant No.21ZR1443900)。
文摘In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.60874091)the Six Projects Sponsoring Talent Summits of Jiangsu Province,China(Grant No.SJ209006)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010526)the Graduate Student Innovation Research Project of Jiangsu Province,China(Grant No.CXLX110417)
文摘In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Purthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection.
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.
基金supported by National Natural Science Foundation of China(No.51674279)China Postdoctoral Science Foundation(No.2016M602227)a grant from National Science and Technology Major Project(No.2017ZX05049-006)
文摘The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.
基金supported by the National Natural Science Foundation of China(Grant No.70871082)the Shanghai Leading Academic Discipline Project,China(Grant No.S30504)
文摘This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.
基金supported by the National Natural Science Foundation of China(Grant No.11975307).
文摘Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different aspects.To explore the impact of location information in depth,this paper proposes an improved global structure model to characterize the influence of nodes.The method considers both the node’s self-information and the role of the location information of neighboring nodes.First,degree centrality of each node is calculated,and then degree value of each node is used to represent self-influence,and degree values of the neighbor layer nodes are divided by the power of the path length,which is path attenuation used to represent global influence.Finally,an extended improved global structure model that considers the nearest neighbor information after combining self-influence and global influence is proposed to identify influential nodes.In this paper,the propagation process of a real network is obtained by simulation with the SIR model,and the effectiveness of the proposed method is verified from two aspects of discrimination and accuracy.The experimental results show that the proposed method is more accurate in identifying influential nodes than other comparative methods with multiple networks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1706218,61971388,and L1824025).
文摘The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global ocean dynamic via constructing a complex network with regard to sea surface temperature. The global ocean is divided into discrete regions to represent the nodes of the network. To understand the ocean dynamic behavior, we introduce the Gaussian mixture models to describe the nodes as limit-cycle oscillators. The interacting dynamical oscillators form the complex network that simulates the ocean as a stochastic system. Gaussian probability matching is suggested to measure the behavior similarity of regions. Complex network statistical characteristics of the network are analyzed in terms of degree distribution, clustering coefficient and betweenness. Experimental results show a pronounced sensitivity of network characteristics to the climatic anomaly in the oceanic circulation. Particularly, the betweenness reveals the main pathways to transfer thermal energy of El Niño–Southern oscillation. Our works provide new insights into the physical processes of ocean dynamic, as well as climate changes and ocean anomalies.