A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small com...A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small compared to the structural scale. Different length scales should be adopted considering the efficiency and computational cost. In the principle of physics, different length scales are stipulated to correspond to different time scales. This concept lays the foundation of the framework for this multiple-time-scale algorithm. A multiple-time-scale algorithm, which involves different time steps for different regions, while enforcing the compatibility of displacement, force and stress fields across the interface, is proposed. Furthermore, a defected beam component is studied as a numerical sample. The structural component is divided into two regions: a coarse one and a fine one; a micro-defect exists in the fine region and the finite element sizes of the two regions are diametrically different. Correspondingly, two different time steps are adopted. With dynamic load applied to the beam, stress and displacement distribution of the defected beam is investigated from the global and local perspectives. The numerical sample reflects that the proposed algorithm is physically rational and computationally efficient in the potential damage simulation of civil structures.展开更多
Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with ...Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.展开更多
In order to avoid such problems as low convergent speed and local optimalsolution in simple genetic algorithms, a new hybrid genetic algorithm is proposed. In thisalgorithm, a mutative scale chaos optimization strateg...In order to avoid such problems as low convergent speed and local optimalsolution in simple genetic algorithms, a new hybrid genetic algorithm is proposed. In thisalgorithm, a mutative scale chaos optimization strategy is operated on the population after agenetic operation. And according to the searching process, the searching space of the optimalvariables is gradually diminished and the regulating coefficient of the secondary searching processis gradually changed which will lead to the quick evolution of the population. The algorithm hassuch advantages as fast search, precise results and convenient using etc. The simulation resultsshow that the performance of the method is better than that of simple genetic algorithms.展开更多
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq...A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.展开更多
Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that...Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom-up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top-down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches.展开更多
This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting...This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting from a basis of its kernel which forms a Chebyshev asymptotic scale at an endpoint. These algorithms arise quite naturally in our asymptotic context and prove very simple in special cases and/or for scales with a small numbers of terms. All the results in the three Parts of this work are well illustrated by a class of asymptotic scales featuring interesting properties. Examples and counterexamples complete the exposition.展开更多
A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problem...A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization.展开更多
This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar (FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during...This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar (FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during reception and between transmission and reception will introduce serious dilation in the received signal. The dilation can cause serious distortions in the reconstructed images using conventional signal processing methods. The received signal is derived and the received signal in range-Doppler domain is given. The relation between the phase resulting from antenna motion and the azimuth frequency is analyzed. The modified frequency scaling algorithm is proposed to process the received signal with serious dilation. The algorithm can effectively eliminate the impact of the dilation. The algorithm performances are shown by the simulation results.展开更多
In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of produc...In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of production, safety and environmental impact in the underground metal mine was established by using multidisciplinary design optimization method. The coupling effects from various disciplines were fully considered, and adaptive mutative scale chaos immunization optimization algorithm was adopted to solve multidisciplinary design optimization model of underground metal mine production scale. Practical results show that multidisciplinary design optimization on production scale of an underground lead and zinc mine reflect the actual operating conditions more realistically, the production scale is about 1.25 Mt/a (Lead and zinc metal content of 160 000 t/a), the economic life is approximately 14 a, corresponding coefficient of production profits can be increased to 15.13%, safety factor can be increased to 5.4% and environmental impact coefficient can be reduced by 9.52%.展开更多
To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the para...To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the parallel-track BiSAR system can not remain invariant in an aperture,an actual aperture is divided into subapertures so that it is reasonable to assume that the aircrafts move with constant acceleration vector in a subaperture.Based on this model,an improved CSA is derived.The new phase factors incorporate three-dimensional acceleration and velocity.The motion compensation procedure is integrated into the CSA without additional operation required.The simulation results show that the presented algorithm can efficiently resolve motion compensation for parallel-track BiSAR.展开更多
This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several proper...This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several properties of the optimal solutions are explored. With the help of these optimality properties, a polynomial time approximation algorithm is developed by a new method. The new method adopts a shift technique to obtain a feasible solution of subproblem and takes the optimal solution of the subproblem as an approximation solution of our problem. The worst case performance for the approximation algorithm is proven to be (4√2 + 5)/7. Finally, an instance illustrates that the bound is tight.展开更多
Sentiment analysis is based on the orientation of user attitudes and satisfaction towards services and subjects.Different methods and techniques have been introduced to analyze sentiments for obtaining high accuracy.T...Sentiment analysis is based on the orientation of user attitudes and satisfaction towards services and subjects.Different methods and techniques have been introduced to analyze sentiments for obtaining high accuracy.The sentiment analysis accuracy depends mainly on supervised and unsupervised mechanisms.Supervised mechanisms are based on machine learning algorithms that achieve moderate or high accuracy but the manual annotation of data is considered a time-consuming process.In unsupervised mechanisms,a lexicon is constructed for storing polarity terms.The accuracy of analyzing data is considered moderate or low if the lexicon contains small terms.In addition,most research methodologies analyze datasets using only 3-weight polarity that can mainly affect the performance of the analysis process.Applying both methods for obtaining high accuracy and efficiency with low user intervention during the analysis process is considered a challenging process.This paper provides a comprehensive evaluation of polarity weights and mechanisms for recent sentiment analysis research.A semi-supervised framework is applied for processing data using both lexicon and machine learning algorithms.An interactive sentiment analysis algorithm is proposed for distributing multi-weight polarities on Arabic lexicons that contain high morphological and linguistic terms.An enhanced scaling algorithm is embedded in the multi-weight algorithm to assign recommended weight polarities automatically.The experimental results are conducted on two datasets to measure the over-all accuracy of proposed algorithms that achieved high results when compared to machine learning algorithms.展开更多
A new Chirp Scaling algorithm for spaceborne synthetic aperture radar(SAR) with large squint angle is presented and compared with the Range-Doppler algorithm and the algorithm in literatur [6] in the paper. The simula...A new Chirp Scaling algorithm for spaceborne synthetic aperture radar(SAR) with large squint angle is presented and compared with the Range-Doppler algorithm and the algorithm in literatur [6] in the paper. The simulation results of processing point target echocs show that the algorithm developed in this paper can give more accurate image especially in the case of large squint angle.展开更多
In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the...In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.展开更多
In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. Th...In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.展开更多
A Class of Collinear Scaling Algorithms for Unconstrained Optimization. An appealing approach to the solution of nonlinear optimization problems based on conic models of the objective function has been in troduced by ...A Class of Collinear Scaling Algorithms for Unconstrained Optimization. An appealing approach to the solution of nonlinear optimization problems based on conic models of the objective function has been in troduced by Davidon (1980). It leads to a broad class of algorithms which can be considered to generalize the existing quasi-Newton methods. One particular member of this class has been deeply discussed by Sorensen (1980), who has proved some interesting theoretical properties. In this paper, we generalize Sorensen’s technique to Spedicato three-parameter family of variable-metric updates. Furthermore, we point out that the collinear scaling three- parameter family is essentially equivalent to the Spedicato three-parameter family. In addition, numerical expriments have been carried out to compare some colliner scaling algorithms with a straightforward implementation of the BFGS quasi-Newton method.展开更多
In this paper, a hybrid simplex-improved genetic algorithm (HSIGA) which combines simplex method (SM) and genetic algorithm (GA) is proposed to solve global numerical optimization problems. In this hybrid algorithm so...In this paper, a hybrid simplex-improved genetic algorithm (HSIGA) which combines simplex method (SM) and genetic algorithm (GA) is proposed to solve global numerical optimization problems. In this hybrid algorithm some improved genetic mechanisms, for example, non-linear ranking selection, competition and selection among several crossover offspring, adaptive change of mutation scaling and stage evolution, are adopted; and new population is produced through three ap-proaches, i.e. elitist strategy, modified simplex strategy and improved genetic algorithm (IGA) strategy. Numerical experi-ments are included to demonstrate effectiveness of the proposed algorithm.展开更多
基金supports from NSFC(No.11302078)China Postdoctoral Science Foundation(No.2013M531139)Shanghai Postdoctoral Sustentation Fund(No.12R21412000)
文摘A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small compared to the structural scale. Different length scales should be adopted considering the efficiency and computational cost. In the principle of physics, different length scales are stipulated to correspond to different time scales. This concept lays the foundation of the framework for this multiple-time-scale algorithm. A multiple-time-scale algorithm, which involves different time steps for different regions, while enforcing the compatibility of displacement, force and stress fields across the interface, is proposed. Furthermore, a defected beam component is studied as a numerical sample. The structural component is divided into two regions: a coarse one and a fine one; a micro-defect exists in the fine region and the finite element sizes of the two regions are diametrically different. Correspondingly, two different time steps are adopted. With dynamic load applied to the beam, stress and displacement distribution of the defected beam is investigated from the global and local perspectives. The numerical sample reflects that the proposed algorithm is physically rational and computationally efficient in the potential damage simulation of civil structures.
基金Hunan Provincial Natural Science Foundation of China (No. 06JJ50103)the National Natural Science Foundationof China (No. 60375001)
文摘Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.
文摘In order to avoid such problems as low convergent speed and local optimalsolution in simple genetic algorithms, a new hybrid genetic algorithm is proposed. In thisalgorithm, a mutative scale chaos optimization strategy is operated on the population after agenetic operation. And according to the searching process, the searching space of the optimalvariables is gradually diminished and the regulating coefficient of the secondary searching processis gradually changed which will lead to the quick evolution of the population. The algorithm hassuch advantages as fast search, precise results and convenient using etc. The simulation resultsshow that the performance of the method is better than that of simple genetic algorithms.
基金supported by the National Natural Science Foundation of China (6117212711071002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (20113401110006)the Innovative Research Team of 211 Project in Anhui University (KJTD007A)
文摘A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant Nos.61003082 and 60903059)the National Natural Science Foundation of China(Grant No.60873014)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.60921062)
文摘Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom-up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top-down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches.
文摘This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting from a basis of its kernel which forms a Chebyshev asymptotic scale at an endpoint. These algorithms arise quite naturally in our asymptotic context and prove very simple in special cases and/or for scales with a small numbers of terms. All the results in the three Parts of this work are well illustrated by a class of asymptotic scales featuring interesting properties. Examples and counterexamples complete the exposition.
基金the Science and Technology Planning Project of Hunan Province(No.2011TP4016-3)the Construct Program of the Key Discipline(Technology of Computer Application)in Xiangnan University
文摘A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization.
文摘This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar (FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during reception and between transmission and reception will introduce serious dilation in the received signal. The dilation can cause serious distortions in the reconstructed images using conventional signal processing methods. The received signal is derived and the received signal in range-Doppler domain is given. The relation between the phase resulting from antenna motion and the azimuth frequency is analyzed. The modified frequency scaling algorithm is proposed to process the received signal with serious dilation. The algorithm can effectively eliminate the impact of the dilation. The algorithm performances are shown by the simulation results.
基金Project(2012BAK09B02-05) supported by the National "Twelfth Five-year" Science & Technology Support Plan of China
文摘In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of production, safety and environmental impact in the underground metal mine was established by using multidisciplinary design optimization method. The coupling effects from various disciplines were fully considered, and adaptive mutative scale chaos immunization optimization algorithm was adopted to solve multidisciplinary design optimization model of underground metal mine production scale. Practical results show that multidisciplinary design optimization on production scale of an underground lead and zinc mine reflect the actual operating conditions more realistically, the production scale is about 1.25 Mt/a (Lead and zinc metal content of 160 000 t/a), the economic life is approximately 14 a, corresponding coefficient of production profits can be increased to 15.13%, safety factor can be increased to 5.4% and environmental impact coefficient can be reduced by 9.52%.
文摘To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the parallel-track BiSAR system can not remain invariant in an aperture,an actual aperture is divided into subapertures so that it is reasonable to assume that the aircrafts move with constant acceleration vector in a subaperture.Based on this model,an improved CSA is derived.The new phase factors incorporate three-dimensional acceleration and velocity.The motion compensation procedure is integrated into the CSA without additional operation required.The simulation results show that the presented algorithm can efficiently resolve motion compensation for parallel-track BiSAR.
基金supported by National Natural Science Foundation of China (No. 10671108 and 70971076)Found for the Doctoral Program of Higher Education of Ministry of Education of China (No. 20070446001)+1 种基金Innovation Planning Project of Shandong Province (No. SDYY06034)Foundation of Qufu Normal University (No. XJZ200849)
文摘This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several properties of the optimal solutions are explored. With the help of these optimality properties, a polynomial time approximation algorithm is developed by a new method. The new method adopts a shift technique to obtain a feasible solution of subproblem and takes the optimal solution of the subproblem as an approximation solution of our problem. The worst case performance for the approximation algorithm is proven to be (4√2 + 5)/7. Finally, an instance illustrates that the bound is tight.
基金funded by the Deanship of Scientific Research at Jouf University under Grant No.(DSR-2021-02-0102)。
文摘Sentiment analysis is based on the orientation of user attitudes and satisfaction towards services and subjects.Different methods and techniques have been introduced to analyze sentiments for obtaining high accuracy.The sentiment analysis accuracy depends mainly on supervised and unsupervised mechanisms.Supervised mechanisms are based on machine learning algorithms that achieve moderate or high accuracy but the manual annotation of data is considered a time-consuming process.In unsupervised mechanisms,a lexicon is constructed for storing polarity terms.The accuracy of analyzing data is considered moderate or low if the lexicon contains small terms.In addition,most research methodologies analyze datasets using only 3-weight polarity that can mainly affect the performance of the analysis process.Applying both methods for obtaining high accuracy and efficiency with low user intervention during the analysis process is considered a challenging process.This paper provides a comprehensive evaluation of polarity weights and mechanisms for recent sentiment analysis research.A semi-supervised framework is applied for processing data using both lexicon and machine learning algorithms.An interactive sentiment analysis algorithm is proposed for distributing multi-weight polarities on Arabic lexicons that contain high morphological and linguistic terms.An enhanced scaling algorithm is embedded in the multi-weight algorithm to assign recommended weight polarities automatically.The experimental results are conducted on two datasets to measure the over-all accuracy of proposed algorithms that achieved high results when compared to machine learning algorithms.
文摘A new Chirp Scaling algorithm for spaceborne synthetic aperture radar(SAR) with large squint angle is presented and compared with the Range-Doppler algorithm and the algorithm in literatur [6] in the paper. The simulation results of processing point target echocs show that the algorithm developed in this paper can give more accurate image especially in the case of large squint angle.
基金the Natural Science Fundation of China for the Innovative Research Group of China Under Grant No. 50621062
文摘In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.
文摘In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.
基金Supported by NNSF of China and NSF of Jiangsu Province
文摘A Class of Collinear Scaling Algorithms for Unconstrained Optimization. An appealing approach to the solution of nonlinear optimization problems based on conic models of the objective function has been in troduced by Davidon (1980). It leads to a broad class of algorithms which can be considered to generalize the existing quasi-Newton methods. One particular member of this class has been deeply discussed by Sorensen (1980), who has proved some interesting theoretical properties. In this paper, we generalize Sorensen’s technique to Spedicato three-parameter family of variable-metric updates. Furthermore, we point out that the collinear scaling three- parameter family is essentially equivalent to the Spedicato three-parameter family. In addition, numerical expriments have been carried out to compare some colliner scaling algorithms with a straightforward implementation of the BFGS quasi-Newton method.
基金Supported by National Natural Science Foundation of P.R.China(60474069)
文摘In this paper, a hybrid simplex-improved genetic algorithm (HSIGA) which combines simplex method (SM) and genetic algorithm (GA) is proposed to solve global numerical optimization problems. In this hybrid algorithm some improved genetic mechanisms, for example, non-linear ranking selection, competition and selection among several crossover offspring, adaptive change of mutation scaling and stage evolution, are adopted; and new population is produced through three ap-proaches, i.e. elitist strategy, modified simplex strategy and improved genetic algorithm (IGA) strategy. Numerical experi-ments are included to demonstrate effectiveness of the proposed algorithm.