期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
1
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models Local discontinuous Galerkin(LDG)scheme Convex splitting method Variant energy quadratization method scalar auxiliary variable method Spectral deferred correction method
在线阅读 下载PDF
Error Estimate of a Second Order Accurate Scalar Auxiliary Variable (SAV) Numerical Method for the Epitaxial Thin Film Equation 被引量:4
2
作者 Qing Cheng Cheng Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第6期1318-1354,共37页
A second order accurate(in time)numerical scheme is analyzed for the slope-selection(SS)equation of the epitaxial thin film growth model,with Fourier pseudo-spectral discretization in space.To make the numerical schem... A second order accurate(in time)numerical scheme is analyzed for the slope-selection(SS)equation of the epitaxial thin film growth model,with Fourier pseudo-spectral discretization in space.To make the numerical scheme linear while preserving the nonlinear energy stability,we make use of the scalar auxiliary variable(SAV)approach,in which a modified Crank-Nicolson is applied for the surface diffusion part.The energy stability could be derived a modified form,in comparison with the standard Crank-Nicolson approximation to the surface diffusion term.Such an energy stability leads to an H2 bound for the numerical solution.In addition,this H2 bound is not sufficient for the optimal rate convergence analysis,and we establish a uniform-in-time H3 bound for the numerical solution,based on the higher order Sobolev norm estimate,combined with repeated applications of discrete H¨older inequality and nonlinear embeddings in the Fourier pseudo-spectral space.This discrete H3 bound for the numerical solution enables us to derive the optimal rate error estimate for this alternate SAV method.A few numerical experiments are also presented,which confirm the efficiency and accuracy of the proposed scheme. 展开更多
关键词 Epitaxial thin film equation Fourier pseudo-spectral approximation the scalar auxiliary variable(SAV)method Crank-Nicolson temporal discretization energy stability optimal rate convergence analysis.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部