Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroot...Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops,it is imperative to develop new strategies and scafolds to promote bone regeneration.Methods:In this study,a porous piezoelectric hydrogel bone scafold was fabricated by incorporating polydopamine(PDA)-modified ceramic hydroxyapatite(PDA-hydroxyapatite,PHA)and PDA-modified barium titanate(PDABaTiO_(3),PBT)nanoparticles into a chitosan/gelatin(Cs/Gel)matrix.The physical and chemical properties of the Cs/Gel/PHA scafold with 0–10 wt%PBT were analyzed.Cell and animal experiments were performed to characterize the immunomodulatory,angiogenic,and osteogenic capabilities of the piezoelectric hydrogel scafold in vitro and in vivo.Results:The incorporation of BaTiO_(3) into the scafold improved its mechanical properties and increased self-generated electricity.Due to their endogenous piezoelectric stimulation and bioactive constituents,the prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory,angiogenic,and osteogenic capabilities;they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration,tube formation,and angiogenic differentiation of human umbilical vein endothelial cells(HUVECs)and facilitated the migration,osteodifferentiation,and extracellular matrix(ECM)mineralization of MC3T3-E1 cells.The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model.The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis,and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization.Conclusion:The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation,angiogenesis,and osteogenesis functions may be used as a substitute in periosteum injuries,thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat efectiveness in grassroots troops.展开更多
The complex stresses experienced by medical-grade porous metals in the physiological environment following implantation as bone repair materials necessitate a comprehensive understanding of their mechanical behavior.T...The complex stresses experienced by medical-grade porous metals in the physiological environment following implantation as bone repair materials necessitate a comprehensive understanding of their mechanical behavior.This paper investigates the efects of pore structure and matrix composition on the corrosion behavior and mechanical properties of pure Zn.Porous Zn alloys with varying pore sizes were prepared via vacuum infltration casting.The results showed that addition of Mg elements and an increase in pore size were observed to enhance the strength and elastic modulus of the porous Zn alloy(41.34±0.113 MPa and 0.58±0.02 GPa of the C-Z3AM).However,corrosion tests indicated that specimens with smaller pores and the addition of Mg elements exhibited accelerated corrosion of porous Zn alloys in Hank’s solution.Electrochemical test results show the corrosion resistance rank in order of C-Z5A>C-Z3AM>N-Z5A>N-Z3AM.Additionally,the mechanical retention of porous Zn alloys in simulated body fuids was found to be signifcantly reduced by the incorporation of Mg elements and smaller pore sizes,the yield strength declines rates of C-Z5A,C-Z3AM and N-Z3AM after 30 days of immersion were 16.7%,63.7%and 78.2%,respectively.The objective is to establish the role of the material-structurecorrosion-mechanics relationship,which can provide a theoretical and experimental basis for the design and evaluation of Zn and its alloy implanted devices.展开更多
In this study,a novel porous 3D composite scaffold based on the biodegradable Poly(ε-caprolactone)(PCL),Polylactide Acid(PLA)and Calcium Citrate(CC)was developed via polymer blends and thermal-induced phase separatio...In this study,a novel porous 3D composite scaffold based on the biodegradable Poly(ε-caprolactone)(PCL),Polylactide Acid(PLA)and Calcium Citrate(CC)was developed via polymer blends and thermal-induced phase separation.The chemical structure,crystalline structure and micromorphology as well as mechanical strength of the scaffolds were characterized by Fourier Transform Infrared Spectroscopy(FTIR),X-ray Diffraction(XRD),Scanning Electron Microscope(SEM)and tensile tests.The results show that the obtained composite scaffold present a suitable bone-like porous structure and sufficient mechanical strength.Furthermore,the release of calcium ions in Simulated Body Fluid(SBF)indicates that the composite material can provide a stable calcium-ion environment and maintain a constant pH value during the soaking process.The cell proliferation results from CCK-8 and light microscopy show that MG63 cells exhibit excellent adhesion and proliferation on the stent.At the same time,animal implantation histology confirms that the composite scaffolds have good biocompatibility in vivo.The scaffold material has greatly potential application value in the field of bone tissue engineering.展开更多
基金supported by the National Natural Science Foundation of China(82202352,82271629)the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(ZNLH202202)+1 种基金the China Postdoctoral Science Foundation Funded Project(2023M732711)the Wenzhou Medical University grant(QTJ23004)。
文摘Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops,it is imperative to develop new strategies and scafolds to promote bone regeneration.Methods:In this study,a porous piezoelectric hydrogel bone scafold was fabricated by incorporating polydopamine(PDA)-modified ceramic hydroxyapatite(PDA-hydroxyapatite,PHA)and PDA-modified barium titanate(PDABaTiO_(3),PBT)nanoparticles into a chitosan/gelatin(Cs/Gel)matrix.The physical and chemical properties of the Cs/Gel/PHA scafold with 0–10 wt%PBT were analyzed.Cell and animal experiments were performed to characterize the immunomodulatory,angiogenic,and osteogenic capabilities of the piezoelectric hydrogel scafold in vitro and in vivo.Results:The incorporation of BaTiO_(3) into the scafold improved its mechanical properties and increased self-generated electricity.Due to their endogenous piezoelectric stimulation and bioactive constituents,the prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory,angiogenic,and osteogenic capabilities;they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration,tube formation,and angiogenic differentiation of human umbilical vein endothelial cells(HUVECs)and facilitated the migration,osteodifferentiation,and extracellular matrix(ECM)mineralization of MC3T3-E1 cells.The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model.The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis,and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization.Conclusion:The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation,angiogenesis,and osteogenesis functions may be used as a substitute in periosteum injuries,thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat efectiveness in grassroots troops.
基金supported by the Shaanxi Qinchuangyuan Cited High-level Innovation and Entrepreneurial Talents Project(Nos.QCYRCXM-2022-156,QCYRCXM-2022-52,QCYRCXM-2023-181)the Fundamental Research Funds for the Central Universities(N2225010)+2 种基金the Yingkou Enterprise Doctoral Innovation and Entrepreneurship Plan(YKSCJH2023-007)the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0378,2023-YBSF-561)the Shaanxi Provincial Key R&D Program(2024SF-YBXM-442).
文摘The complex stresses experienced by medical-grade porous metals in the physiological environment following implantation as bone repair materials necessitate a comprehensive understanding of their mechanical behavior.This paper investigates the efects of pore structure and matrix composition on the corrosion behavior and mechanical properties of pure Zn.Porous Zn alloys with varying pore sizes were prepared via vacuum infltration casting.The results showed that addition of Mg elements and an increase in pore size were observed to enhance the strength and elastic modulus of the porous Zn alloy(41.34±0.113 MPa and 0.58±0.02 GPa of the C-Z3AM).However,corrosion tests indicated that specimens with smaller pores and the addition of Mg elements exhibited accelerated corrosion of porous Zn alloys in Hank’s solution.Electrochemical test results show the corrosion resistance rank in order of C-Z5A>C-Z3AM>N-Z5A>N-Z3AM.Additionally,the mechanical retention of porous Zn alloys in simulated body fuids was found to be signifcantly reduced by the incorporation of Mg elements and smaller pore sizes,the yield strength declines rates of C-Z5A,C-Z3AM and N-Z3AM after 30 days of immersion were 16.7%,63.7%and 78.2%,respectively.The objective is to establish the role of the material-structurecorrosion-mechanics relationship,which can provide a theoretical and experimental basis for the design and evaluation of Zn and its alloy implanted devices.
基金jointly supported by the National Natural Science Foundation of China(NO.41673109)Sichuan Science and Technology Program(2021YFH0098)Key Project of Sichuan Vanadium and Titanium Industry Development Research Center(2018VTCYZ-01).
文摘In this study,a novel porous 3D composite scaffold based on the biodegradable Poly(ε-caprolactone)(PCL),Polylactide Acid(PLA)and Calcium Citrate(CC)was developed via polymer blends and thermal-induced phase separation.The chemical structure,crystalline structure and micromorphology as well as mechanical strength of the scaffolds were characterized by Fourier Transform Infrared Spectroscopy(FTIR),X-ray Diffraction(XRD),Scanning Electron Microscope(SEM)and tensile tests.The results show that the obtained composite scaffold present a suitable bone-like porous structure and sufficient mechanical strength.Furthermore,the release of calcium ions in Simulated Body Fluid(SBF)indicates that the composite material can provide a stable calcium-ion environment and maintain a constant pH value during the soaking process.The cell proliferation results from CCK-8 and light microscopy show that MG63 cells exhibit excellent adhesion and proliferation on the stent.At the same time,animal implantation histology confirms that the composite scaffolds have good biocompatibility in vivo.The scaffold material has greatly potential application value in the field of bone tissue engineering.