The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods ar...The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.展开更多
The resistivity experimental measurements of core samples drilled from low permeability reservoirs of Ordos Basin, Northwest China, illustrate that the cementation factors are not agminate, but vary from 1.335 to 1.74...The resistivity experimental measurements of core samples drilled from low permeability reservoirs of Ordos Basin, Northwest China, illustrate that the cementation factors are not agminate, but vary from 1.335 to 1.749. This leads to a challenge for the estimation of water and hydrocarbon sa- turation. Based on the analysis of Purcell equation and assumption that rock resistivity is determined by the parallel connection of numerous capillary resistances, a theoretical expression of cementation factor in terms of porosity and permeability is established. Then, cementation factor can be calculated if the parameters of porosity and permeability are determined. In the field application, porosity can be easily obtained by conventional logs. However, it is a tough challenge to estimate permeability due to the strong heterogeneity of low permeability reservoirs. Thus, the Schlumberger Doll Research (SDR) model derived from NMR logs has been proposed to estimate permeability. Based on the analysis of the theoretical expressions of cementation factor and SDR model, a novel cementation factor prediction model, which is relevant to porosity and logarithmic mean of NMR T2 spectrum (T21m), is derived. The advantage of this model is that all the input information can be acquired from NMR logs accurately. In order to confirm the credibility of the novel model, the resistivity and corresponding laboratory NMR measurements of 27 core samples are conducted. The credibility of the model is confirmed by compar- ing the predicted cementation factors with the core analyzed results. The absolute errors for all core samples are lower than 0.071. Once this model is extended to field application, the accuracy of water and hydrocarbon saturation estimation will be significantly improved.展开更多
In this study,the parameters of Gassmann equation based on fluid replacement theory are studied by measuring the acoustic velocity during the evaporation process of volcanic rocks in Nanpu area.The experimental data s...In this study,the parameters of Gassmann equation based on fluid replacement theory are studied by measuring the acoustic velocity during the evaporation process of volcanic rocks in Nanpu area.The experimental data show that with the decrease of porosity of tight volcanic rock,the acoustic velocity difference between dry and wet rock samples increases,which is conducive for the identification of gas bearing reservoirs with acoustic log data.The fluid bulk modulus distribution of volcanic rocks in the study area conforms to Brie model,and the value of empirical coefficient e is related to lithology.The experimental results show that there is a linear relationship between the P-wave transit time of dry and wet rock samples.Using porosity to calculate the acoustic transit time of saturated rock samples,and taking it into the experimental formula,we can get the P-wave transit time and bulk modulus of dry rock samples.According to the bulk modulus of mixed fluid,dry rock and rock matrix determined by experiments,the saturation of volcanic reservoir in Nanpu area is calculated by Gassmann equation,which is in good contrast with the conclusion of gas test.This study provides an experimental basis for quantitative evaluation of volcanic gas reservoirs using seismic and acoustic logging data.展开更多
基金funded by the National Natural Science Foundation of China (42174131)。
文摘The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.
基金supported by the Major National Oil&Gas Specific Project of China(No.2011ZX05044)
文摘The resistivity experimental measurements of core samples drilled from low permeability reservoirs of Ordos Basin, Northwest China, illustrate that the cementation factors are not agminate, but vary from 1.335 to 1.749. This leads to a challenge for the estimation of water and hydrocarbon sa- turation. Based on the analysis of Purcell equation and assumption that rock resistivity is determined by the parallel connection of numerous capillary resistances, a theoretical expression of cementation factor in terms of porosity and permeability is established. Then, cementation factor can be calculated if the parameters of porosity and permeability are determined. In the field application, porosity can be easily obtained by conventional logs. However, it is a tough challenge to estimate permeability due to the strong heterogeneity of low permeability reservoirs. Thus, the Schlumberger Doll Research (SDR) model derived from NMR logs has been proposed to estimate permeability. Based on the analysis of the theoretical expressions of cementation factor and SDR model, a novel cementation factor prediction model, which is relevant to porosity and logarithmic mean of NMR T2 spectrum (T21m), is derived. The advantage of this model is that all the input information can be acquired from NMR logs accurately. In order to confirm the credibility of the novel model, the resistivity and corresponding laboratory NMR measurements of 27 core samples are conducted. The credibility of the model is confirmed by compar- ing the predicted cementation factors with the core analyzed results. The absolute errors for all core samples are lower than 0.071. Once this model is extended to field application, the accuracy of water and hydrocarbon saturation estimation will be significantly improved.
文摘In this study,the parameters of Gassmann equation based on fluid replacement theory are studied by measuring the acoustic velocity during the evaporation process of volcanic rocks in Nanpu area.The experimental data show that with the decrease of porosity of tight volcanic rock,the acoustic velocity difference between dry and wet rock samples increases,which is conducive for the identification of gas bearing reservoirs with acoustic log data.The fluid bulk modulus distribution of volcanic rocks in the study area conforms to Brie model,and the value of empirical coefficient e is related to lithology.The experimental results show that there is a linear relationship between the P-wave transit time of dry and wet rock samples.Using porosity to calculate the acoustic transit time of saturated rock samples,and taking it into the experimental formula,we can get the P-wave transit time and bulk modulus of dry rock samples.According to the bulk modulus of mixed fluid,dry rock and rock matrix determined by experiments,the saturation of volcanic reservoir in Nanpu area is calculated by Gassmann equation,which is in good contrast with the conclusion of gas test.This study provides an experimental basis for quantitative evaluation of volcanic gas reservoirs using seismic and acoustic logging data.