This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the...The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.展开更多
Map building by multi-robot is very important to accomplish autonomous navigation,and one of the basic problems and research hotspots is how to merge the maps into a single one in the field of multi-robot map building...Map building by multi-robot is very important to accomplish autonomous navigation,and one of the basic problems and research hotspots is how to merge the maps into a single one in the field of multi-robot map building.A novel approach is put forward based on adaptive differential evolution to map building for the multi-robot system.The multi-robot mapping-building system adopts the methods of decentralized exploration and concentrated mapping.The adaptive differential evolution algorithm is used to search in the space of possible transformation,and the iterative search is performed with the goal of maximizing overlapping regions.The map is translated and rotated so that the two maps can be overlapped and merged into a single global one successfully.This approach for map building can be realized without any knowledge of their relative positions.Experimental results show that the approach is effective and feasibile.展开更多
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti...To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.展开更多
Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;"&g...Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span>展开更多
Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So ...Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability.展开更多
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a...To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.展开更多
建立了电力系统经济调度模型,该模型以发电成本最小为目标,考虑了火电机组阀点效应和系统运行约束,并提出了求解该模型的饱和度自适应微分进化(saturation and adaptive differential evolution,SADE)算法。为避免算法搜索的盲目性,使...建立了电力系统经济调度模型,该模型以发电成本最小为目标,考虑了火电机组阀点效应和系统运行约束,并提出了求解该模型的饱和度自适应微分进化(saturation and adaptive differential evolution,SADE)算法。为避免算法搜索的盲目性,使算法既能集中于局部最优解又能兼顾全局最优解,引入了控制参数自适应调整策略和饱和度概念,该算法可避免"早熟"现象,收敛速度快。3机组、13机组和40机组算例结果验证了SADE算法的有效性。展开更多
针对非线性Wiener模型的参数辨识问题,提出了一种基于Sigmoid函数及自适应算子改进差分进化(improved differential evolution algorithm with Sigmoid function and adaptive mutation operator,SADE)算法的参数辨识方法。利用Sigmoid...针对非线性Wiener模型的参数辨识问题,提出了一种基于Sigmoid函数及自适应算子改进差分进化(improved differential evolution algorithm with Sigmoid function and adaptive mutation operator,SADE)算法的参数辨识方法。利用Sigmoid函数及自适应变异算子改进了基本差分进化算法的变异操作部分,改进的方法能够有效地克服基本差分进化算法的过早收敛和不稳定性等缺点。将该改进差分进化算法应用于对非线性Wiener模型的参数辨识问题,达到了较高的辨识精度。在仿真试验中,与其它已有方法进行比较,仿真结果说明了所给的参数辨识方法是合理和有效的。展开更多
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
文摘The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.
基金Supported by the National Natural Science Foundation of China(No.90820302,60805027)the Provincial Natural Science Foundation of Hunan(No.12JJ3064)+1 种基金the Construct Program of the Key Discipline in Hunan Province(No.201176)the Planned Science and Technology Project of Hunan Province(No.2011SK3135,2012FJ3059)
文摘Map building by multi-robot is very important to accomplish autonomous navigation,and one of the basic problems and research hotspots is how to merge the maps into a single one in the field of multi-robot map building.A novel approach is put forward based on adaptive differential evolution to map building for the multi-robot system.The multi-robot mapping-building system adopts the methods of decentralized exploration and concentrated mapping.The adaptive differential evolution algorithm is used to search in the space of possible transformation,and the iterative search is performed with the goal of maximizing overlapping regions.The map is translated and rotated so that the two maps can be overlapped and merged into a single global one successfully.This approach for map building can be realized without any knowledge of their relative positions.Experimental results show that the approach is effective and feasibile.
基金National Key Basic Research Project of China(973 program)(No.2013CB733600)National Natural Science Foundation of China(No.21176073)+1 种基金Program for New Century Excellent Talents in University,China(No.NCET-09-0346)the Fundamental Research Funds for the Central Universities,China
文摘To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
文摘Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span>
文摘Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability.
基金The National Natural Science Foundation of China(No.62272239,62303214)Jiangsu Agricultural Science and Tech-nology Independent Innovation Fund(No.SJ222051).
文摘To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.
文摘建立了电力系统经济调度模型,该模型以发电成本最小为目标,考虑了火电机组阀点效应和系统运行约束,并提出了求解该模型的饱和度自适应微分进化(saturation and adaptive differential evolution,SADE)算法。为避免算法搜索的盲目性,使算法既能集中于局部最优解又能兼顾全局最优解,引入了控制参数自适应调整策略和饱和度概念,该算法可避免"早熟"现象,收敛速度快。3机组、13机组和40机组算例结果验证了SADE算法的有效性。
文摘针对非线性Wiener模型的参数辨识问题,提出了一种基于Sigmoid函数及自适应算子改进差分进化(improved differential evolution algorithm with Sigmoid function and adaptive mutation operator,SADE)算法的参数辨识方法。利用Sigmoid函数及自适应变异算子改进了基本差分进化算法的变异操作部分,改进的方法能够有效地克服基本差分进化算法的过早收敛和不稳定性等缺点。将该改进差分进化算法应用于对非线性Wiener模型的参数辨识问题,达到了较高的辨识精度。在仿真试验中,与其它已有方法进行比较,仿真结果说明了所给的参数辨识方法是合理和有效的。