In 1959,the talk of Richard P.Feynman“There's plenty of room at the bottom”inspired us to explore the very,very small world where a lot of new things would happen that represent completely new designing opportun...In 1959,the talk of Richard P.Feynman“There's plenty of room at the bottom”inspired us to explore the very,very small world where a lot of new things would happen that represent completely new designing opportunities.Atoms on a small scale behave like nothing on a large scale,for they satisfy the laws of quantum mechanics.As we go down and fiddle around with the atoms there,we work with different laws,which enables us to realize different tasks and manufacture in different ways.展开更多
Chinese Chemical Letters(CCL)(ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistr...Chinese Chemical Letters(CCL)(ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc., satisfying a real and urgent need for the dissemination of research results, especially hot topics. The journal does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.展开更多
In this paper we present a classical parallel quantum algorithm for the satisfiability problem. We have exploited the classical parallelism of quantum algorithms developed in [G.L. Long and L. Xiao, Phys. Rev. A 69 (...In this paper we present a classical parallel quantum algorithm for the satisfiability problem. We have exploited the classical parallelism of quantum algorithms developed in [G.L. Long and L. Xiao, Phys. Rev. A 69 (2004) 052303], so that additional acceleration can be gained by using classical parallelism. The quantum algorithm first estimates the number of solutions using the quantum counting algorithm, and then by using the quantum searching algorithm, the explicit solutions are found.展开更多
As a complementary technology to Binary Decision Diagram-based(BDD-based) symbolic model checking, the verification techniques on Boolean satisfiability problem have gained an increasing wide of applications over the ...As a complementary technology to Binary Decision Diagram-based(BDD-based) symbolic model checking, the verification techniques on Boolean satisfiability problem have gained an increasing wide of applications over the last few decades, which brings a dramatic improvement for automatic verification. In this paper, we firstly introduce the theory about the Boolean satisfiability verification, including the description on the problem of Boolean satisfiability verification, Davis-Putnam-Logemann-Loveland(DPLL) based complete verification algorithm, and all kinds of solvers generated and the logic languages used by those solvers. Moreover, we formulate a large number optimizations of technique revolutions based on Boolean SATisfiability(SAT) and Satisfiability Modulo Theories(SMT) solving in detail, including incomplete methods such as bounded model checking, and other methods for concurrent programs model checking. Finally, we point out the major challenge pervasively in industrial practice and prospect directions for future research in the field of formal verification.展开更多
The maximum satisfiability problem (MAX-SAT) refers to the task of finding a variable assignment that satisfies the maximum number of clauses (or the sum of weight of satisfied clauses) in a Boolean Formula. Most loca...The maximum satisfiability problem (MAX-SAT) refers to the task of finding a variable assignment that satisfies the maximum number of clauses (or the sum of weight of satisfied clauses) in a Boolean Formula. Most local search algorithms including tabu search rely on the 1-flip neighbourhood structure. In this work, we introduce a tabu search algorithm that makes use of the multilevel paradigm for solving MAX-SAT problems. The multilevel paradigm refers to the process of dividing large and difficult problems into smaller ones, which are hopefully much easier to solve, and then work backward towards the solution of the original problem, using a solution from a previous level as a starting solution at the next level. This process aims at looking at the search as a multilevel process operating in a coarse-to-fine strategy evolving from k-flip neighbourhood to 1-flip neighbourhood-based structure. Experimental results comparing the multilevel tabu search against its single level variant are presented.展开更多
文摘In 1959,the talk of Richard P.Feynman“There's plenty of room at the bottom”inspired us to explore the very,very small world where a lot of new things would happen that represent completely new designing opportunities.Atoms on a small scale behave like nothing on a large scale,for they satisfy the laws of quantum mechanics.As we go down and fiddle around with the atoms there,we work with different laws,which enables us to realize different tasks and manufacture in different ways.
文摘Chinese Chemical Letters(CCL)(ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc., satisfying a real and urgent need for the dissemination of research results, especially hot topics. The journal does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
基金supported by 973 Program under Grant No.2006CB921106National Natural Science Foundation of China under Grant No.60635040the Key Grant Project of the Ministry of Education under Grant No.306020
文摘In this paper we present a classical parallel quantum algorithm for the satisfiability problem. We have exploited the classical parallelism of quantum algorithms developed in [G.L. Long and L. Xiao, Phys. Rev. A 69 (2004) 052303], so that additional acceleration can be gained by using classical parallelism. The quantum algorithm first estimates the number of solutions using the quantum counting algorithm, and then by using the quantum searching algorithm, the explicit solutions are found.
基金Supported by the National Natural Science Foundation of China(Nos.61063002,61100186,61262008)Guangxi Natural Science Foundation of China(2011GXNSFA018164,2011GXNSFA018166,2012GXNSFAA053220)the Key Project of Education Department of Guangxi
文摘As a complementary technology to Binary Decision Diagram-based(BDD-based) symbolic model checking, the verification techniques on Boolean satisfiability problem have gained an increasing wide of applications over the last few decades, which brings a dramatic improvement for automatic verification. In this paper, we firstly introduce the theory about the Boolean satisfiability verification, including the description on the problem of Boolean satisfiability verification, Davis-Putnam-Logemann-Loveland(DPLL) based complete verification algorithm, and all kinds of solvers generated and the logic languages used by those solvers. Moreover, we formulate a large number optimizations of technique revolutions based on Boolean SATisfiability(SAT) and Satisfiability Modulo Theories(SMT) solving in detail, including incomplete methods such as bounded model checking, and other methods for concurrent programs model checking. Finally, we point out the major challenge pervasively in industrial practice and prospect directions for future research in the field of formal verification.
文摘The maximum satisfiability problem (MAX-SAT) refers to the task of finding a variable assignment that satisfies the maximum number of clauses (or the sum of weight of satisfied clauses) in a Boolean Formula. Most local search algorithms including tabu search rely on the 1-flip neighbourhood structure. In this work, we introduce a tabu search algorithm that makes use of the multilevel paradigm for solving MAX-SAT problems. The multilevel paradigm refers to the process of dividing large and difficult problems into smaller ones, which are hopefully much easier to solve, and then work backward towards the solution of the original problem, using a solution from a previous level as a starting solution at the next level. This process aims at looking at the search as a multilevel process operating in a coarse-to-fine strategy evolving from k-flip neighbourhood to 1-flip neighbourhood-based structure. Experimental results comparing the multilevel tabu search against its single level variant are presented.