This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw ...This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.展开更多
Radial variation in sap flux density (SFD) as a function of sapwood thickness is of importance in accurately estimating sap flux through sapwood area which, in turn, decides the precision of heat pulse application. Ho...Radial variation in sap flux density (SFD) as a function of sapwood thickness is of importance in accurately estimating sap flux through sapwood area which, in turn, decides the precision of heat pulse application. However, until now, only a few studies have evaluated the magnitude and significance of sampling errors associated with radial gradients in SFD, which were based on the small monitoring measurement data from a few trees. Based on one year of heat pulse observation of two 3 - 4 years old Eucalyptus urophylla S. T.,P Blake plantations in Leizhou Peninsula, Guangdong Province, China, a way of data processing was developed to treat with the lots of SFD data measured from 39 trees. It was found that the radial variation in SFD as a function of sapwood thickness in the two eucalyptus plantation sites could be expressed as y = 3. 667 5x(3) - 7.295 5x(2) + 3.682 6x + 0. 567 4 (R-2 = 0. 939 1, n = 80, P = 0.01), where y is the ratio of SFD of a sensor to the average of four data in different depths, x is the ratio of a sensor depth to tire radial sapwood thickness. It was the same (as in the following equation) in Jijia site, y = 5.006 2x(3) - 9.116 1x(2) + 4. 454 4x + 0.463 4 (R-2 = 0. 806 9, n = 72, P = 0.01) in Hetou site. From cambium to heartwood, SFD showed some increases at first and then decreases continuously. However, because die trees were very young, the maximum SFD was only 0. 33 - 0. 36 times more than the minimum.展开更多
The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among ...The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.展开更多
基金Funded by the Science and Technology Program of Gansu Province(Nos.25JRRA497,23ZDFA017)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0950000)High-level Talent Funding of Kashi。
文摘This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.
文摘Radial variation in sap flux density (SFD) as a function of sapwood thickness is of importance in accurately estimating sap flux through sapwood area which, in turn, decides the precision of heat pulse application. However, until now, only a few studies have evaluated the magnitude and significance of sampling errors associated with radial gradients in SFD, which were based on the small monitoring measurement data from a few trees. Based on one year of heat pulse observation of two 3 - 4 years old Eucalyptus urophylla S. T.,P Blake plantations in Leizhou Peninsula, Guangdong Province, China, a way of data processing was developed to treat with the lots of SFD data measured from 39 trees. It was found that the radial variation in SFD as a function of sapwood thickness in the two eucalyptus plantation sites could be expressed as y = 3. 667 5x(3) - 7.295 5x(2) + 3.682 6x + 0. 567 4 (R-2 = 0. 939 1, n = 80, P = 0.01), where y is the ratio of SFD of a sensor to the average of four data in different depths, x is the ratio of a sensor depth to tire radial sapwood thickness. It was the same (as in the following equation) in Jijia site, y = 5.006 2x(3) - 9.116 1x(2) + 4. 454 4x + 0.463 4 (R-2 = 0. 806 9, n = 72, P = 0.01) in Hetou site. From cambium to heartwood, SFD showed some increases at first and then decreases continuously. However, because die trees were very young, the maximum SFD was only 0. 33 - 0. 36 times more than the minimum.
基金supported by the Fundamental Research Funds of the Chinese Academy of Forestry(CAFYBB2020QB004)the National Natural Science Foundation of China(41971038,32171559,U20A2085,and U21A2005).
文摘The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.