A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the key...A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.展开更多
This paper is a review of the past research of mechanical testing methods for natural fibre honeycomb sandwich structure as well as failure modes analysis at a microscopic level by using Scanning Electron Microscope (...This paper is a review of the past research of mechanical testing methods for natural fibre honeycomb sandwich structure as well as failure modes analysis at a microscopic level by using Scanning Electron Microscope (SEM). As the world is garnering attention towards renewable resources for environmental purposes, studies of natural fibre have been increasing as well as the application of natural fibre throughout various industries such as aerospace, automobiles, and construction sectors. This paper is started with brief information regarding the honeycomb sandwich structure, introduction to natural fibre, its applications as well as the factors affecting the performances of the structure. Next, the mechanical testing methods are listed out as well as the expected outcomes obtained from the respective testing. The mechanical properties are also identified by conducting lab tests according to the ASTM standard for sandwich and core structures. The microstructure of the deformed samples is then examined under Scanning Electron Microscope (SEM) by using different magnifications to study the failure mechanisms of the samples. The images obtained from the SEM test are analyzed by using fractography which will show the failure modes of the samples. This article is based on past research conducted by professional on the related topic.展开更多
基金Projects (51175162, 50805045) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.
文摘This paper is a review of the past research of mechanical testing methods for natural fibre honeycomb sandwich structure as well as failure modes analysis at a microscopic level by using Scanning Electron Microscope (SEM). As the world is garnering attention towards renewable resources for environmental purposes, studies of natural fibre have been increasing as well as the application of natural fibre throughout various industries such as aerospace, automobiles, and construction sectors. This paper is started with brief information regarding the honeycomb sandwich structure, introduction to natural fibre, its applications as well as the factors affecting the performances of the structure. Next, the mechanical testing methods are listed out as well as the expected outcomes obtained from the respective testing. The mechanical properties are also identified by conducting lab tests according to the ASTM standard for sandwich and core structures. The microstructure of the deformed samples is then examined under Scanning Electron Microscope (SEM) by using different magnifications to study the failure mechanisms of the samples. The images obtained from the SEM test are analyzed by using fractography which will show the failure modes of the samples. This article is based on past research conducted by professional on the related topic.