Outcrop and drill hole data show that the Jurassic coal measures in the northeastern Ordos Basin are composed mainly of the Yan’an Formation and the lowstand system tract of the Zhiluo Formation, and there is a regio...Outcrop and drill hole data show that the Jurassic coal measures in the northeastern Ordos Basin are composed mainly of the Yan’an Formation and the lowstand system tract of the Zhiluo Formation, and there is a regional unconformity between them. The Dongsheng uranium deposit is associated with the Jurassic coal measures. Research data indicate that the Jurassic coal measures in the study area have a certain hydrocarbon-generating capacity, although the metamorphic grade is low (Ro=0.40%–0.58%). In the Dongsheng region alone, the accumulative amount of generated coalbed methane (CBM) is about 2028.29 × 108 –2218.72 × 108 m3; the residual amount is about 50.92 × 108 m3, and the lost amount is about 1977 × 108 m3. Analysis of the burial history of the host rocks and the evolutionary history of the Dongsheng uranium deposit suggests that the Jurassic coal measures generated hydrocarbon mainly from Middle Jurassic to Early Crataceous, which is the main mineralization phase of the Dongsheng uranium deposit. By the Late Cretaceous, a mass of CBM dissipated due to the strong tectonic uplift, and the Dongsheng uranium deposit stepped into the preservation phase. Therefore, the low-mature hydrocarbon-containing fluid in the Jurassic coal measures not only served as a reducing agent for the formation of sandstone-type uranium deposits, but also rendered the second reduction of paleo-interlayer oxidation zone and become the primary reducing agent for ore conservation. Regional strata correlation reveals that the sandstone-type uranium reservoir at the bottom of the Zhiluo Formation is in contact with the underlying industrial coal seams in the Yan’an Formation through incision or in the form of an unconformity surface. In the Dongsheng region with poorly developed fault systems, the unconformity surface and scour surface served as the main migration pathways for low-mature hydrocarbon-containing fluid migrating to the uranium reservoir.展开更多
Many theoretical results on sandstone-type uranium mineralization in northern China obtained by the uranium research team of the Tianjin Center of Geological Survey in recent years are presented.From the source sink s...Many theoretical results on sandstone-type uranium mineralization in northern China obtained by the uranium research team of the Tianjin Center of Geological Survey in recent years are presented.From the source sink system of uranium-producing basins,sedimentary environment of uranium-bearing rock series,ore-forming fluid information,evolution of tectonic events,basin formation and development,we redefine and classify uranium orebodies,redox zoning,and ore-controlling structural styles.We then systematically propose a theoretical system of sandstone-type uranium deposits in northern China.We conclude that sandstone-type uranium deposits in northern China are mainly found in sedimentary environments such as rivers,deltas,and alluvial fans in the Mesozoic and Cenozoic lowstand systems tract and in gray sandstone layers in the vertical redox zoning.The orebodies are controlled by the tectonic slope belt,which is in the shape of a strip on the plane,and spreads in a layer or plate on the section.Vertical(ups and downs)tectonic movement triggers large-scale phreatic flow in the basin,which is the real driving force for controlling the ore-forming fluid.The theoretical system of sandstone-type uranium deposits in northern China should be based on global tectonic movement and environmental changes and take into account factors such as basins as a unit to study mineralization background,ore concentration areas as objects to study mineralization,and the correlation between regional tectonic movement and metallogenic process as a breakthrough point to study tectonic events and metallogenic events.It should also be based on different basin types to establish metallogenic models.The innovative research results and ideas are summarized with the aim of promoting the continuous improvement of sandstone-type uranium mineralization theory in northern China.展开更多
In the continental basins of Northern China(NC),a series of energy resources commonly co-exist in the same basin.As the three typical superimposed basins of different genesis in the NC,the Junggar,Ordos,and Songliao b...In the continental basins of Northern China(NC),a series of energy resources commonly co-exist in the same basin.As the three typical superimposed basins of different genesis in the NC,the Junggar,Ordos,and Songliao basins were chosen as the research objects.The favorable uraniumbearing structures are generally shown as a basin-margin slope or transition belt of uplifts with the development of faults,which are conducive to a fluid circulation system.The Hercynian,Indosinian,and Yanshanian movements resulted in the development of uranium-rich intrusions which acted as the significant uranium sources.The main hydrocarbon source rocks are developed in the Carboniferous,Permian,Jurassic and Cretaceous.The mature stage of source rocks is concentrated in the Jurassic–Cretaceous,followed by the multi-stage expulsion events.Influenced by the India-Eurasian collision and the subduction of the Pacific Plate,the tectonic transformation in the Late Yanshanian and Himalayan periods significantly influenced the sandstone-type uranium mineralization.The hydrocarbon reservoirs are spatially consistent with sandstone-type uranium deposits,while the hydrocarbon expulsion events occur in sequence with sandstone-type uranium mineralization.In the periphery of the faults or the uplifts,both fluids met and formed uranium concentration.The regional tectonic movements motivate the migration of hydrocarbon fluids and uranium mineralization,especially the Himalayan movement.展开更多
Identifying ore-induced geochemical anomalies at the surface that indicate concealed deposits in buried areas remains a significant challenge in geochemical exploration. In this study, in order to trace the source of ...Identifying ore-induced geochemical anomalies at the surface that indicate concealed deposits in buried areas remains a significant challenge in geochemical exploration. In this study, in order to trace the source of the geochemical anomalies, systematic luminescence intensity analyses were conducted on quartz grains from the Quaternary regolith at the Hadatu sandstone-type uranium deposit in the Erenhot Basin. The optically stimulated luminescence(OSL) ages were much older than the depositional ages of the Quaternary regolith. Moreover, quartz OSL ages were closely related to both borehole grades and sampling depths. Thus, the abnormal mineral OSL ages from near-surface sediments were ultimately controlled by the sandstone-type uranium deposits. This is identical to the rapid changes of quartz OSL ages(0.063 ka/cm) and equivalent doses(0.19 Gy/cm) with depths in a given sampling site. The instantaneous soil radon concentration was positively correlated with the quartz OSL apparent age, indicating their ore-induced origin and, as a result, their effectiveness in the exploration of concealed uranium deposits. Other parameters, including mobile-state uranium and;Po contents, were poorly correlated with quartz OSL ages and therefore should only be used with caution for geochemical exploration. This is the first time an attempt has been made to discriminate the ore-induced sources for different surface anomaly parameters, including instantaneous soil radon, mobile-state uranium and;Po contents for concealed sandstonetype uranium deposits.展开更多
This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved ...This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved that these approaches have yielded good results on classifying the sedimentary facies, defining the redox transitional zones and reflecting deep mineralization information. They may probably become new methods on searching for sandstone-type uranium deposits.展开更多
The U-Pb isotope system and uranium isotope composition(235U/238U and 234U/238U)were studied in a number of samples from the vertical section of the uranium ore body at the Vershinnoe sandstone-type deposit,Vitim uran...The U-Pb isotope system and uranium isotope composition(235U/238U and 234U/238U)were studied in a number of samples from the vertical section of the uranium ore body at the Vershinnoe sandstone-type deposit,Vitim uranium ore district,Russia.These parameters were determined to broadly vary.Deviations of the 234U/238U ratio from the equilibrium value indicate that the uranium ore was not completely conserved during the postore stage,and uranium was determined to continue migrating at the deposit.Comparison of the U-Pb isotope age value and 234U/238U isotope ratio provides an insight into the migrate direction of uranium in the ore body.The broad variations(137.377–137.772)in the 238U/235U ratio over the vertical section of the ore body can be explained by the different settings of the samples relative to the ore deposition front and changes in the redox conditions when this front shifted.The fact that theδ238U and K234/238 values are correlated indicates that the transfer of the 234U isotope into the aqueous phase may have been coupled with isotope fractionation in the 238U-235U system during the postformation uranium migration within the orebody.展开更多
This paper deals with the metallogenic model of the sandstone type uranium deposit in the northeastern Ordos Basin from aspects of uranium source, migration and deposition. A superposition metallogenic model has been ...This paper deals with the metallogenic model of the sandstone type uranium deposit in the northeastern Ordos Basin from aspects of uranium source, migration and deposition. A superposition metallogenic model has been established due to complex uranium mineralization processes with superposition of oil-gas reduction and thermal reformation.展开更多
The exploration depth of sandstone-type uranium deposits worldwide is mostly less than 700 m,and most of them occur in strata of fluvial facies(Adams et al.,1981;Jin et al.,2016;Hou et al.,2017).Only a few small urani...The exploration depth of sandstone-type uranium deposits worldwide is mostly less than 700 m,and most of them occur in strata of fluvial facies(Adams et al.,1981;Jin et al.,2016;Hou et al.,2017).Only a few small uranium deposits have been reported in aeolian depositional environments(Isachsen et al.,1955;Li et al.,2001).In the Pcngyang Jingchuan region of the southwestern Ordos Basin,uranium ore bodies with large thickness and high grade in the aeolian sandstone of the Luohe Formation were newly found at depths from 700 to 1500 m,which have laid the foundation for increasing the uranium resources significantly in the Ordos Basin.展开更多
The Dongsheng sandstone-type uranium deposit is one of the large-sized sandstone-type uranium deposits discovered in the northern part of the Ordos Basin of China in recent years. Geochemical characteristics of the Do...The Dongsheng sandstone-type uranium deposit is one of the large-sized sandstone-type uranium deposits discovered in the northern part of the Ordos Basin of China in recent years. Geochemical characteristics of the Dongsheng uranium deposit are significantly different from those of the typical interlayered oxidized sandstone-type uranium ore deposits in the region of Middle Asia. Fluid inclusion studies of the uranium deposit showed that the uranium ore-forming temperatures are within the range of 150–160℃. Their 3He/4He ratios are within the range of 0.02–1.00 R/Ra, about 5–40 times those of the crust. Their 40Ar/36Ar ratios vary from 584 to 1243, much higher than the values of atmospheric argon. The δ18OH2O and δD values of fluid inclusions from the uranium deposit are -3.0‰– -8.75‰ and -55.8‰– -71.3‰, respectively, reflecting the characteristics of mixed fluid of meteoric water and magmatic water. The δ18OH2O and δD values of kaolinite layer at the bottom of the uranium ore deposit are 6.1‰ and -77‰, respectively, showing the characteristics of magmatic water. The δ13CV-PDB and δ18OH2O values of calcite veins in uranium ores are -8.0‰ and 5.76‰, respectively, showing the characteristics of mantle source. Geochemical characteristics of fluid inclusions indicated that the ore-formation fluid for the Dongsheng uranium deposit was a mixed fluid of meteoric water and deep-source fluid from the crust. It was proposed that the Jurassic-Cretaceous U-rich metamorphic rocks and granites widespread in the northern uplift area of the Ordos Basin had been weathered and denudated and the ore-forming elements, mainly uranium, were transported by meteoric waters to the Dongsheng region, where uranium ores were formed. Tectonothermal events and magmatic activities in the Ordos Basin during the Mesozoic made fluids in the deep interior and oil/gas at shallow levels upwarp along the fault zone and activated fractures, filling into U-bearing clastic sandstones, thus providing necessary energy for the formation of uranium ores.展开更多
The major elements, trace elements and REEs were analyzed on the samples collected from the sandstone-type uranium deposits in the Ordos Basin to constrain the mechanism of uranium enrichment. The total REE amount ran...The major elements, trace elements and REEs were analyzed on the samples collected from the sandstone-type uranium deposits in the Ordos Basin to constrain the mechanism of uranium enrichment. The total REE amount ranges from 36.7 to 701.8 μg/g and the REE distribution patterns of the sandstone-type uranium samples are characterized by LREE enrichment and high REE depletion. The results also indicated a high Y abundance and Eu anomalies between 0.77-1.81. High-precision ICP-MS results showed that U abundances are within the range of 0.73-150 μg/g, showing some strong correlation between U enrichment and related elements such as Ti, V, Zr, Mo, and Au. In addition, Th abundance is correlated with ΣREE.展开更多
Generally, sandstone-type uranium deposits can be divided into three zones according to their redox conditions: oxidized zone, ore zone and reduced zone. The Dongsheng uranium deposit belongs to this type. In order to...Generally, sandstone-type uranium deposits can be divided into three zones according to their redox conditions: oxidized zone, ore zone and reduced zone. The Dongsheng uranium deposit belongs to this type. In order to study its geochemical characteristics, 11 samples were taken from the three zones of the Dongsheng uranium deposit. Five samples of them were collected from the oxidized zone, four samples from the ore zone and two samples from the reduced zone. These samples were analyzed using organic and inorganic geochemical methods. The results of GC traces and ICP-MASS indicate that the three zones show different organic and inorganic geochemical characteristics.展开更多
Synthetic methods of thin section petrography, scanning electron microscope, electron microprobe, energy spectrum analysis, cathodoluminescence, isotopic analysis and temperature measuring for fluid inclusions were us...Synthetic methods of thin section petrography, scanning electron microscope, electron microprobe, energy spectrum analysis, cathodoluminescence, isotopic analysis and temperature measuring for fluid inclusions were used in analyzing sandstone samples collected from the Zhiluo Formation in order to fully understand the diagenesis evolution and the mineralizing response as well as the genesis of the uranium-bearing sandstone in Dongsheng area. The result shows that (1) the sandstone include lithic silicarenite, feldspathic litharenite and litharenite; (2) the authigenic minerals include clay minerals, carbonate minerals, siliceous and ferric minerals; (3) the physical property of sandstone is obviously controlled by diagenesis; and (4) the sandstone with favorable physical property is propitious to migration and storage of ore-forming fluid, and finally, forming the ore deposit. The sandstone of the Zhiluo Formation had undergone the early diagenetic stage (periods A and B) and the epidiagenetic stage. The evolution of diagenetic environment is in the order of acidic oxidation, alkalescent deoxidization, acidity to transitional environment of oxidation-deoxidization and acidity-alkalescence. The uranium exists in forms of pre-enrichment uranyl ion, active uranyl ion, dispersive adsorptive uranium and uranium mineral, respectively. In addition, the authors also hold that the formation of the sandstone-type uranium is not only related to the oxidation-deoxidization environment, but also closely related to the acidic-alkaline transitional environment, which are propitious to uranium mineralization in sandstone.展开更多
Sandstone-type uranium deposits(STUDs) are the most important global source of uranium. However, it is unclear why STUDs have a non-random distribution in time and space. It is generally thought that STUDs are formed ...Sandstone-type uranium deposits(STUDs) are the most important global source of uranium. However, it is unclear why STUDs have a non-random distribution in time and space. It is generally thought that STUDs are formed by the circulation of groundwater in sandstone rocks. The groundwater is typically oxidized and sourced from local precipitation, which suggests the regional climate may have a role in the formation of STUDs. The groundwater circulation is mainly affected by basin evolution, which means that regional tectonism may also control the formation of STUDs. In this study, the author examined STUDs in Asia, and compiled previously reported ages for STUDs and compared these with the uplift history of the major orehosting regions and the late Mesozoic–Cenozoic climatic evolution of Asia. Apart from a few uranium deposits in the Transural region, most of the STUDs in Asia were formed during the Late Cretaceous to Quaternary, and can be classified into three stages:Late Cretaceous–early Paleogene(80–50 Ma;stage I), Oligocene–mid-Miocene(25–17 Ma;stage Ⅱ), and late Miocene–present(8–0 Ma;stage Ⅲ). The formation of STUDs in Asia was closely related to regional uplift caused by India–Eurasia collision,subduction of oceanic plates, and increased humidity during greenhouse climate periods and intensification of the Asian Monsoon.展开更多
The study aims to investigate uranium species in the sediments of the natural-technogenic system within a sludge storage facility in Russia.The relevance of this work is underscored by the need to assess the geochemic...The study aims to investigate uranium species in the sediments of the natural-technogenic system within a sludge storage facility in Russia.The relevance of this work is underscored by the need to assess the geochemical mobility of radionuclides,a critical factor for predicting their migration and environmental impact.The objective of the research was to determine the uranium species in both peat and sedimentary rock samples of the sludge storage facility and the adjacent area.Laboratory analyses included XRD,XRF analysis using synchrotron radiation,and scanning electron microscopy to study the composition and properties of minerals.The uranium species were further identified using a modified Tessier sequential extraction method.The results revealed that uranium predominantly occurs in a stable silicate-bound form(up to 80%)in sedimentary rocks,indicating minimal geochemical mobility.In contrast,in peat deposits,uranium is primarily associated with manganese and iron oxides(30–60%)as well as organic matter(5–40%),with the most mobile forms constituting less than 5%.The decrease in uranium concentration with distance from the facility was attributed to sorption onto organic matter and co-precipitation with mineral compounds,manganese and iron oxides,which serve as effective natural sorbents.The findings highlight the critical role of organic matter and metal oxides in limiting uranium migration,thus identifying them as key components in the formation of natural barriers for radionuclides.These results are crucial for assessing environmental risks associated with radioactive waste management and for developing strategies to minimize the ecological impact of sludge storages.展开更多
The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solution...The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solutions using corncob-sodium alginate(SA)-immobilized Trichoderma aureoviride hyphal pellets.Experimental parameters,including initial solution pH,initial concentration,temperature,and contact time,were systematically examined to understand their influence on the bioadsorption process.Results showed that the corncob-SA-immobilized T.aureoviride hyphal pellets exhibited maximum uranium biosorption capacity at an initial pH of 6.23 and a contact time of 12 h.The equilibrium data aligned with the Langmuir isotherm model,with a maximum biosorption capacity of 105.60 mg/g at 301 K.Moreover,biosorption kinetics followed the pseudo-second-order kinetic model.In terms of thermodynamic parameters,the changes in Gibbs-free energy(△G°)were determined to be-4.29 kJ/mol at 301 K,the changes in enthalpy(△H°)were 46.88 kJ/mol,and the changes in entropy(△S°)was 164.98 J/(mol·K).Notably,the adsorbed U(VI)could be efficiently desorbed using Na_(2)CO_(3),with a maximum readsorption efficiency of 53.6%.Scanning electron microscopic(SEM)analysis revealed U(VI)ion binding onto the hyphal pellet surface.This study underscores the efficacy of corncob-SA-immobilized T.aureoviride hyphal pellets as a cost-effective and environmentally favorable biosorbent material for removing U(VI)from aquatic ecosystems.展开更多
It has been shown that the age of minerals in which U±Th are a major(e.g.,uraninite,pitchblende and thorite)or minor(e.g.,monazite,xenotime)component can be calculated from the concentrations of U±Th and Pb ...It has been shown that the age of minerals in which U±Th are a major(e.g.,uraninite,pitchblende and thorite)or minor(e.g.,monazite,xenotime)component can be calculated from the concentrations of U±Th and Pb rather than their isotopes,and such ages are referred to as chemical ages.Although equations for calculating the chemical ages have been well established and various computation programs have been reported,there is a lack of software that can not only calculate the chemical ages of individual analytical points but also provide an evaluation of the errors of individual ages as well as the whole dataset.In this paper,we develop a software for calculating and assessing the chemical ages of uranium minerals(CAUM),an open-source Python-based program with a friendly Graphical User Interface(GUI).Electron probe microanalysis(EPMA)data of uranium minerals are first imported from Excel files and used to calculate the chemical ages and associated errors of individual analytical points.The age data are then visualized to aid evaluating if the dataset comprises one or multiple populations and whether or not there are meaningful correlations between the chemical ages and impurities.Actions can then be taken to evaluate the errors within individual populations and the significance of the correlations.The use of the software is demonstrated with examples from published data.展开更多
Fast development of nuclear power plants requires sustainable support of uranium for nuclear fuel.Uranium is the most critical radionuclide to prepare nuclear fuel.However,the extraction of low concentration of uraniu...Fast development of nuclear power plants requires sustainable support of uranium for nuclear fuel.Uranium is the most critical radionuclide to prepare nuclear fuel.However,the extraction of low concentration of uranium in uranium ore or complex systems needs highly efficient selective binding of uranium in the presence of other competing metal ions.The excellent oxidative capacity of excited*UO_(2)^(2+)active species makes uranyl-based materials high photocatalytic performance in phototransformation of organic chemicals into high valuable products under visible light irradiation.In this mini review,the selective preconcentration of uranium through photocatalytic and electrocatalytic strategies was mainly described.The application of uranyl-based materials in photocatalytic conversion and degradation of organic pollutants was summarized.This review reports the utilization of uranium from its first step(i.e.,extraction of uranium for nuclear fuel supply)to its last additional application(i.e.,uranyl-based materials as photocatalysts in transformation and conversion of organic pollutants for environmental pollution treatment)from the viewpoint of“turning uranium wastes into treasure,from waste recycling to reutilization.”In the end of this review,the challenges and perspectives of uranium separation and catalytic properties were described.展开更多
Prompt fission neutron uranium logging(PFNUL)is an advanced method for utilizing pulsed neutron bombardment of the ore layer and a fission reaction with uranium(^(235)U)to detect the transient neutrons produced by fis...Prompt fission neutron uranium logging(PFNUL)is an advanced method for utilizing pulsed neutron bombardment of the ore layer and a fission reaction with uranium(^(235)U)to detect the transient neutrons produced by fission and then directly measure and quantify uranium;however,the stability and lifetime performance of pulsed neutron sources are the key constraints to its rapid promotion.To address these problems,this study proposes a PFNUL technique for acquiring the time spectrum of dual-energy neutrons(epithermal and thermal neutrons)from the upper and lower detection structures and establishes a novel uranium quantification algorithm based on the ratio of epithermal and thermal neutron time windows(E/T)via a mathematical-physical modeling derivation.Through simulations on well-logging models with di erent uranium contents,the starting and stopping times of the time window(Δt)for uranium quantification in the dual-energy neutron time spectrum are determined to be 200 and 800μs,respectively.The minimum radius and height of the model wells are 60 and 120 cm,respectively,and the E/T values in the time window show an excellent linear relationship with the uranium content.The scale factor is K_(E/T)=1.92 and R^(2)=0.999,which verifies the validity of the E/T uranium quantification algorithm.In addition,experiments were carried out in the Nu series of uranium standard model wells,and the results showed that under di erent neutron source yields,the E/T-based uranium quantification method reduced the relative standard deviation of the scale factor of the uranium content from 33.41%to 1.09%,compared with a single epithermal neutron quantification method.These results prove that the E/T value uranium quantification method is una ected by the change in the neutron source yield,e ectively improves the accuracy and service life of the logging instrument,and has great scientific and popularization value.展开更多
The study of uranium isotopes plays a crucial role in advancing our knowledge of nuclear physics,particularly in the realm of isospin and exotic nuclei.This study focused on the ground-state properties of uranium isot...The study of uranium isotopes plays a crucial role in advancing our knowledge of nuclear physics,particularly in the realm of isospin and exotic nuclei.This study focused on the ground-state properties of uranium isotopes ranging from A=203 to A=305.The key physical quantities examined included binding energy,quadrupole deformation,isotopic displacement,single-particle energy levels,and nucleon density distributions.Recent experimental advancements in uranium isotope studies have emphasized the indispensable role of theoretical models in interpreting experimental data.Moreover,the industrial applications of uranium—especially in nuclear energy production and weapons development—underscore the importance and necessity of accurate theoretical insights.The framework of the finite-range droplet model(FRDM)was utilized for comparative analysis because its predictions closely align with the experimental results.Through an analysis of the single-particle energy levels and continuous-state occupancy,this study identified 207 U as the proton drip line nucleus.This research not only deepens our understanding of uranium isotopes but also provides a solid theoretical foundation to guide future experimental investigations.展开更多
The Erlian Basin is one of the most important multi-energy basins in China.The Baiyanhua area of the Chuanjing depression in the western Erlian Basin has recently become a favorable area for new progress in sandstone-...The Erlian Basin is one of the most important multi-energy basins in China.The Baiyanhua area of the Chuanjing depression in the western Erlian Basin has recently become a favorable area for new progress in sandstone-type uranium prospecting.However,the Cretaceous source-to-sink evolution of the Chuanjing depression in the Erlian Basin is poorly known.This paper presents the systematic geochemical and zircon U-Pb studies on the Saihantala Formation and Erlian Formation in the Baiyanhua area.The data obtained are functionally important for revealing the provenance and tectonic setting of the source rocks.The results show that the upper part of the Saihantala Formation and the lower part of the Erlian Formation are mainly composed of felsic sedimentary rocks.The source rocks originated from a continental margin arc environment in terms of tectonic setting.The detrital zircons ages have the dominant populations at ca.250-270 Ma,with two subdominant age groups at ca.1400-1800 and 1900-2100 Ma,respectively.Combined with the tectono-sedimentary evolution of the Chuanjing depression,we conclude that:(1)the provenance of the Cretaceous strata was mostly sourced from the Baiyanhua uplift;(2)the water depth became shallow in the Southern Sangendalai sag during the middle period of Saihantala,further preventing the formation of coal beds;(3)the formation of Baiyanhua uplift might provide the beneficial tectonic condition for uranium mineralization in the upper Saihantala Formation in southern Sangendalai sag.This is significant for us to understand the space allocation of coal and uranium in Chuanjing depression and evaluate the uranium metallogenic prospects in southern Sangendalai sag.展开更多
基金sponsored by the National Natural Science Foundation Program of China (Nos.40772072 and 40802023)the Uranium Deposit Geological Program of Bureau of Geology,CNNC,the National Important Basic Research Program of China (No.2003CB214603 and No.2015CB453003)the Dongsheng coal and uranium exploration program of Central Geological exploration Fund (No.2008150013)
文摘Outcrop and drill hole data show that the Jurassic coal measures in the northeastern Ordos Basin are composed mainly of the Yan’an Formation and the lowstand system tract of the Zhiluo Formation, and there is a regional unconformity between them. The Dongsheng uranium deposit is associated with the Jurassic coal measures. Research data indicate that the Jurassic coal measures in the study area have a certain hydrocarbon-generating capacity, although the metamorphic grade is low (Ro=0.40%–0.58%). In the Dongsheng region alone, the accumulative amount of generated coalbed methane (CBM) is about 2028.29 × 108 –2218.72 × 108 m3; the residual amount is about 50.92 × 108 m3, and the lost amount is about 1977 × 108 m3. Analysis of the burial history of the host rocks and the evolutionary history of the Dongsheng uranium deposit suggests that the Jurassic coal measures generated hydrocarbon mainly from Middle Jurassic to Early Crataceous, which is the main mineralization phase of the Dongsheng uranium deposit. By the Late Cretaceous, a mass of CBM dissipated due to the strong tectonic uplift, and the Dongsheng uranium deposit stepped into the preservation phase. Therefore, the low-mature hydrocarbon-containing fluid in the Jurassic coal measures not only served as a reducing agent for the formation of sandstone-type uranium deposits, but also rendered the second reduction of paleo-interlayer oxidation zone and become the primary reducing agent for ore conservation. Regional strata correlation reveals that the sandstone-type uranium reservoir at the bottom of the Zhiluo Formation is in contact with the underlying industrial coal seams in the Yan’an Formation through incision or in the form of an unconformity surface. In the Dongsheng region with poorly developed fault systems, the unconformity surface and scour surface served as the main migration pathways for low-mature hydrocarbon-containing fluid migrating to the uranium reservoir.
基金The“Northern Sandstone-type Uranium Deposits Investigation Project”(Project 0108)of the China Geological Survey has led to the discovery of many new sandstone-type uranium depositsThe National Basic Research Program(973 Program)(No.2015CB453000)+1 种基金the National Key R&D Program of China(No.2018YFC0604200)both from the Ministry of Science and Technology of the People’s Republic of China have led to innovations in many theoretical understandings of sandstone-type uranium depositsUnder the International Geoscience Programme(No.IGCP-675),a comparative study of sandstone-type uranium deposits between China and the rest of the world has been conducted。
文摘Many theoretical results on sandstone-type uranium mineralization in northern China obtained by the uranium research team of the Tianjin Center of Geological Survey in recent years are presented.From the source sink system of uranium-producing basins,sedimentary environment of uranium-bearing rock series,ore-forming fluid information,evolution of tectonic events,basin formation and development,we redefine and classify uranium orebodies,redox zoning,and ore-controlling structural styles.We then systematically propose a theoretical system of sandstone-type uranium deposits in northern China.We conclude that sandstone-type uranium deposits in northern China are mainly found in sedimentary environments such as rivers,deltas,and alluvial fans in the Mesozoic and Cenozoic lowstand systems tract and in gray sandstone layers in the vertical redox zoning.The orebodies are controlled by the tectonic slope belt,which is in the shape of a strip on the plane,and spreads in a layer or plate on the section.Vertical(ups and downs)tectonic movement triggers large-scale phreatic flow in the basin,which is the real driving force for controlling the ore-forming fluid.The theoretical system of sandstone-type uranium deposits in northern China should be based on global tectonic movement and environmental changes and take into account factors such as basins as a unit to study mineralization background,ore concentration areas as objects to study mineralization,and the correlation between regional tectonic movement and metallogenic process as a breakthrough point to study tectonic events and metallogenic events.It should also be based on different basin types to establish metallogenic models.The innovative research results and ideas are summarized with the aim of promoting the continuous improvement of sandstone-type uranium mineralization theory in northern China.
基金jointly supported by the National Key Research and Development Program of China (No.2018YFC0604200)the National Science Foundation of China (Nos.92162212,41502195)+2 种基金the International Geoscience Programme (No.GCP-675)the Open Fund Project of State Key Laboratory of Nuclear Resources and Environment (No.2020NRE10)the Geological Survey Project of China Geological Survey (Nos.DD20190121,DD20190119,DD20211191,and DD20221678)
文摘In the continental basins of Northern China(NC),a series of energy resources commonly co-exist in the same basin.As the three typical superimposed basins of different genesis in the NC,the Junggar,Ordos,and Songliao basins were chosen as the research objects.The favorable uraniumbearing structures are generally shown as a basin-margin slope or transition belt of uplifts with the development of faults,which are conducive to a fluid circulation system.The Hercynian,Indosinian,and Yanshanian movements resulted in the development of uranium-rich intrusions which acted as the significant uranium sources.The main hydrocarbon source rocks are developed in the Carboniferous,Permian,Jurassic and Cretaceous.The mature stage of source rocks is concentrated in the Jurassic–Cretaceous,followed by the multi-stage expulsion events.Influenced by the India-Eurasian collision and the subduction of the Pacific Plate,the tectonic transformation in the Late Yanshanian and Himalayan periods significantly influenced the sandstone-type uranium mineralization.The hydrocarbon reservoirs are spatially consistent with sandstone-type uranium deposits,while the hydrocarbon expulsion events occur in sequence with sandstone-type uranium mineralization.In the periphery of the faults or the uplifts,both fluids met and formed uranium concentration.The regional tectonic movements motivate the migration of hydrocarbon fluids and uranium mineralization,especially the Himalayan movement.
基金supported by the National Key Research and Development Program of Deep-penetrating Geochemistry(Grant No.2016YFC0600604)。
文摘Identifying ore-induced geochemical anomalies at the surface that indicate concealed deposits in buried areas remains a significant challenge in geochemical exploration. In this study, in order to trace the source of the geochemical anomalies, systematic luminescence intensity analyses were conducted on quartz grains from the Quaternary regolith at the Hadatu sandstone-type uranium deposit in the Erenhot Basin. The optically stimulated luminescence(OSL) ages were much older than the depositional ages of the Quaternary regolith. Moreover, quartz OSL ages were closely related to both borehole grades and sampling depths. Thus, the abnormal mineral OSL ages from near-surface sediments were ultimately controlled by the sandstone-type uranium deposits. This is identical to the rapid changes of quartz OSL ages(0.063 ka/cm) and equivalent doses(0.19 Gy/cm) with depths in a given sampling site. The instantaneous soil radon concentration was positively correlated with the quartz OSL apparent age, indicating their ore-induced origin and, as a result, their effectiveness in the exploration of concealed uranium deposits. Other parameters, including mobile-state uranium and;Po contents, were poorly correlated with quartz OSL ages and therefore should only be used with caution for geochemical exploration. This is the first time an attempt has been made to discriminate the ore-induced sources for different surface anomaly parameters, including instantaneous soil radon, mobile-state uranium and;Po contents for concealed sandstonetype uranium deposits.
文摘This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved that these approaches have yielded good results on classifying the sedimentary facies, defining the redox transitional zones and reflecting deep mineralization information. They may probably become new methods on searching for sandstone-type uranium deposits.
文摘The U-Pb isotope system and uranium isotope composition(235U/238U and 234U/238U)were studied in a number of samples from the vertical section of the uranium ore body at the Vershinnoe sandstone-type deposit,Vitim uranium ore district,Russia.These parameters were determined to broadly vary.Deviations of the 234U/238U ratio from the equilibrium value indicate that the uranium ore was not completely conserved during the postore stage,and uranium was determined to continue migrating at the deposit.Comparison of the U-Pb isotope age value and 234U/238U isotope ratio provides an insight into the migrate direction of uranium in the ore body.The broad variations(137.377–137.772)in the 238U/235U ratio over the vertical section of the ore body can be explained by the different settings of the samples relative to the ore deposition front and changes in the redox conditions when this front shifted.The fact that theδ238U and K234/238 values are correlated indicates that the transfer of the 234U isotope into the aqueous phase may have been coupled with isotope fractionation in the 238U-235U system during the postformation uranium migration within the orebody.
文摘This paper deals with the metallogenic model of the sandstone type uranium deposit in the northeastern Ordos Basin from aspects of uranium source, migration and deposition. A superposition metallogenic model has been established due to complex uranium mineralization processes with superposition of oil-gas reduction and thermal reformation.
基金the National Key Research and Development Project(grant No.2018YFC0604200)the Ministry of Science and Technology of China(Grant 20I5CB453000).
文摘The exploration depth of sandstone-type uranium deposits worldwide is mostly less than 700 m,and most of them occur in strata of fluvial facies(Adams et al.,1981;Jin et al.,2016;Hou et al.,2017).Only a few small uranium deposits have been reported in aeolian depositional environments(Isachsen et al.,1955;Li et al.,2001).In the Pcngyang Jingchuan region of the southwestern Ordos Basin,uranium ore bodies with large thickness and high grade in the aeolian sandstone of the Luohe Formation were newly found at depths from 700 to 1500 m,which have laid the foundation for increasing the uranium resources significantly in the Ordos Basin.
文摘The Dongsheng sandstone-type uranium deposit is one of the large-sized sandstone-type uranium deposits discovered in the northern part of the Ordos Basin of China in recent years. Geochemical characteristics of the Dongsheng uranium deposit are significantly different from those of the typical interlayered oxidized sandstone-type uranium ore deposits in the region of Middle Asia. Fluid inclusion studies of the uranium deposit showed that the uranium ore-forming temperatures are within the range of 150–160℃. Their 3He/4He ratios are within the range of 0.02–1.00 R/Ra, about 5–40 times those of the crust. Their 40Ar/36Ar ratios vary from 584 to 1243, much higher than the values of atmospheric argon. The δ18OH2O and δD values of fluid inclusions from the uranium deposit are -3.0‰– -8.75‰ and -55.8‰– -71.3‰, respectively, reflecting the characteristics of mixed fluid of meteoric water and magmatic water. The δ18OH2O and δD values of kaolinite layer at the bottom of the uranium ore deposit are 6.1‰ and -77‰, respectively, showing the characteristics of magmatic water. The δ13CV-PDB and δ18OH2O values of calcite veins in uranium ores are -8.0‰ and 5.76‰, respectively, showing the characteristics of mantle source. Geochemical characteristics of fluid inclusions indicated that the ore-formation fluid for the Dongsheng uranium deposit was a mixed fluid of meteoric water and deep-source fluid from the crust. It was proposed that the Jurassic-Cretaceous U-rich metamorphic rocks and granites widespread in the northern uplift area of the Ordos Basin had been weathered and denudated and the ore-forming elements, mainly uranium, were transported by meteoric waters to the Dongsheng region, where uranium ores were formed. Tectonothermal events and magmatic activities in the Ordos Basin during the Mesozoic made fluids in the deep interior and oil/gas at shallow levels upwarp along the fault zone and activated fractures, filling into U-bearing clastic sandstones, thus providing necessary energy for the formation of uranium ores.
基金This study is supported by the Chinese 973 National Key Research and Development Program (2003CB214606) on Accumulation and Formation of Multi-Energy Mineral Deposits Coexisting in the same Basin and Open Foundation of the State Laboratory of Geological Processes and Mineral Resources.
文摘The major elements, trace elements and REEs were analyzed on the samples collected from the sandstone-type uranium deposits in the Ordos Basin to constrain the mechanism of uranium enrichment. The total REE amount ranges from 36.7 to 701.8 μg/g and the REE distribution patterns of the sandstone-type uranium samples are characterized by LREE enrichment and high REE depletion. The results also indicated a high Y abundance and Eu anomalies between 0.77-1.81. High-precision ICP-MS results showed that U abundances are within the range of 0.73-150 μg/g, showing some strong correlation between U enrichment and related elements such as Ti, V, Zr, Mo, and Au. In addition, Th abundance is correlated with ΣREE.
文摘Generally, sandstone-type uranium deposits can be divided into three zones according to their redox conditions: oxidized zone, ore zone and reduced zone. The Dongsheng uranium deposit belongs to this type. In order to study its geochemical characteristics, 11 samples were taken from the three zones of the Dongsheng uranium deposit. Five samples of them were collected from the oxidized zone, four samples from the ore zone and two samples from the reduced zone. These samples were analyzed using organic and inorganic geochemical methods. The results of GC traces and ICP-MASS indicate that the three zones show different organic and inorganic geochemical characteristics.
文摘Synthetic methods of thin section petrography, scanning electron microscope, electron microprobe, energy spectrum analysis, cathodoluminescence, isotopic analysis and temperature measuring for fluid inclusions were used in analyzing sandstone samples collected from the Zhiluo Formation in order to fully understand the diagenesis evolution and the mineralizing response as well as the genesis of the uranium-bearing sandstone in Dongsheng area. The result shows that (1) the sandstone include lithic silicarenite, feldspathic litharenite and litharenite; (2) the authigenic minerals include clay minerals, carbonate minerals, siliceous and ferric minerals; (3) the physical property of sandstone is obviously controlled by diagenesis; and (4) the sandstone with favorable physical property is propitious to migration and storage of ore-forming fluid, and finally, forming the ore deposit. The sandstone of the Zhiluo Formation had undergone the early diagenetic stage (periods A and B) and the epidiagenetic stage. The evolution of diagenetic environment is in the order of acidic oxidation, alkalescent deoxidization, acidity to transitional environment of oxidation-deoxidization and acidity-alkalescence. The uranium exists in forms of pre-enrichment uranyl ion, active uranyl ion, dispersive adsorptive uranium and uranium mineral, respectively. In addition, the authors also hold that the formation of the sandstone-type uranium is not only related to the oxidation-deoxidization environment, but also closely related to the acidic-alkaline transitional environment, which are propitious to uranium mineralization in sandstone.
基金supported by the Uranium Exploration Projects of China National Nuclear Corporation(Grant Nos.22045004 and QNYC2103).
文摘Sandstone-type uranium deposits(STUDs) are the most important global source of uranium. However, it is unclear why STUDs have a non-random distribution in time and space. It is generally thought that STUDs are formed by the circulation of groundwater in sandstone rocks. The groundwater is typically oxidized and sourced from local precipitation, which suggests the regional climate may have a role in the formation of STUDs. The groundwater circulation is mainly affected by basin evolution, which means that regional tectonism may also control the formation of STUDs. In this study, the author examined STUDs in Asia, and compiled previously reported ages for STUDs and compared these with the uplift history of the major orehosting regions and the late Mesozoic–Cenozoic climatic evolution of Asia. Apart from a few uranium deposits in the Transural region, most of the STUDs in Asia were formed during the Late Cretaceous to Quaternary, and can be classified into three stages:Late Cretaceous–early Paleogene(80–50 Ma;stage I), Oligocene–mid-Miocene(25–17 Ma;stage Ⅱ), and late Miocene–present(8–0 Ma;stage Ⅲ). The formation of STUDs in Asia was closely related to regional uplift caused by India–Eurasia collision,subduction of oceanic plates, and increased humidity during greenhouse climate periods and intensification of the Asian Monsoon.
基金supported by the Russian Science Foundation grant number 23-27-00362,https://rscf.ru/en/project/23-27-00362/.
文摘The study aims to investigate uranium species in the sediments of the natural-technogenic system within a sludge storage facility in Russia.The relevance of this work is underscored by the need to assess the geochemical mobility of radionuclides,a critical factor for predicting their migration and environmental impact.The objective of the research was to determine the uranium species in both peat and sedimentary rock samples of the sludge storage facility and the adjacent area.Laboratory analyses included XRD,XRF analysis using synchrotron radiation,and scanning electron microscopy to study the composition and properties of minerals.The uranium species were further identified using a modified Tessier sequential extraction method.The results revealed that uranium predominantly occurs in a stable silicate-bound form(up to 80%)in sedimentary rocks,indicating minimal geochemical mobility.In contrast,in peat deposits,uranium is primarily associated with manganese and iron oxides(30–60%)as well as organic matter(5–40%),with the most mobile forms constituting less than 5%.The decrease in uranium concentration with distance from the facility was attributed to sorption onto organic matter and co-precipitation with mineral compounds,manganese and iron oxides,which serve as effective natural sorbents.The findings highlight the critical role of organic matter and metal oxides in limiting uranium migration,thus identifying them as key components in the formation of natural barriers for radionuclides.These results are crucial for assessing environmental risks associated with radioactive waste management and for developing strategies to minimize the ecological impact of sludge storages.
基金supported by the National Natural Science Foundation of China(Grant No.21968001).
文摘The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solutions using corncob-sodium alginate(SA)-immobilized Trichoderma aureoviride hyphal pellets.Experimental parameters,including initial solution pH,initial concentration,temperature,and contact time,were systematically examined to understand their influence on the bioadsorption process.Results showed that the corncob-SA-immobilized T.aureoviride hyphal pellets exhibited maximum uranium biosorption capacity at an initial pH of 6.23 and a contact time of 12 h.The equilibrium data aligned with the Langmuir isotherm model,with a maximum biosorption capacity of 105.60 mg/g at 301 K.Moreover,biosorption kinetics followed the pseudo-second-order kinetic model.In terms of thermodynamic parameters,the changes in Gibbs-free energy(△G°)were determined to be-4.29 kJ/mol at 301 K,the changes in enthalpy(△H°)were 46.88 kJ/mol,and the changes in entropy(△S°)was 164.98 J/(mol·K).Notably,the adsorbed U(VI)could be efficiently desorbed using Na_(2)CO_(3),with a maximum readsorption efficiency of 53.6%.Scanning electron microscopic(SEM)analysis revealed U(VI)ion binding onto the hyphal pellet surface.This study underscores the efficacy of corncob-SA-immobilized T.aureoviride hyphal pellets as a cost-effective and environmentally favorable biosorbent material for removing U(VI)from aquatic ecosystems.
基金supported by the Natural Science Foundation Program of China(42173072,41503037,U1967207)Postgraduate Innovative Cultivation Program(CDUT2023BJCX013)Uranium Resources Exploration and Exploitation Innovation Center&and Everest Scientific Research Program(CDUT).
文摘It has been shown that the age of minerals in which U±Th are a major(e.g.,uraninite,pitchblende and thorite)or minor(e.g.,monazite,xenotime)component can be calculated from the concentrations of U±Th and Pb rather than their isotopes,and such ages are referred to as chemical ages.Although equations for calculating the chemical ages have been well established and various computation programs have been reported,there is a lack of software that can not only calculate the chemical ages of individual analytical points but also provide an evaluation of the errors of individual ages as well as the whole dataset.In this paper,we develop a software for calculating and assessing the chemical ages of uranium minerals(CAUM),an open-source Python-based program with a friendly Graphical User Interface(GUI).Electron probe microanalysis(EPMA)data of uranium minerals are first imported from Excel files and used to calculate the chemical ages and associated errors of individual analytical points.The age data are then visualized to aid evaluating if the dataset comprises one or multiple populations and whether or not there are meaningful correlations between the chemical ages and impurities.Actions can then be taken to evaluate the errors within individual populations and the significance of the correlations.The use of the software is demonstrated with examples from published data.
基金support from the National Natural Science Foundation of China(Nos.U24B20195,U23A20105,U2341289,22341602,22327807)was acknowledged.
文摘Fast development of nuclear power plants requires sustainable support of uranium for nuclear fuel.Uranium is the most critical radionuclide to prepare nuclear fuel.However,the extraction of low concentration of uranium in uranium ore or complex systems needs highly efficient selective binding of uranium in the presence of other competing metal ions.The excellent oxidative capacity of excited*UO_(2)^(2+)active species makes uranyl-based materials high photocatalytic performance in phototransformation of organic chemicals into high valuable products under visible light irradiation.In this mini review,the selective preconcentration of uranium through photocatalytic and electrocatalytic strategies was mainly described.The application of uranyl-based materials in photocatalytic conversion and degradation of organic pollutants was summarized.This review reports the utilization of uranium from its first step(i.e.,extraction of uranium for nuclear fuel supply)to its last additional application(i.e.,uranyl-based materials as photocatalysts in transformation and conversion of organic pollutants for environmental pollution treatment)from the viewpoint of“turning uranium wastes into treasure,from waste recycling to reutilization.”In the end of this review,the challenges and perspectives of uranium separation and catalytic properties were described.
基金supported by the National Natural Science Foundation of China(No.42374226)Jiangxi Provincial Natural Science Foundation(Nos.20232BAB201043,gpyc20240073,and 20232BCJ23006)+2 种基金Nuclear Energy Development Project(20201192-01)Fundamental Science on Radioactive Geology and Exploration Technology Laboratory(2022RGET20)National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing(ECUT)(2024QZ-TD-09)。
文摘Prompt fission neutron uranium logging(PFNUL)is an advanced method for utilizing pulsed neutron bombardment of the ore layer and a fission reaction with uranium(^(235)U)to detect the transient neutrons produced by fission and then directly measure and quantify uranium;however,the stability and lifetime performance of pulsed neutron sources are the key constraints to its rapid promotion.To address these problems,this study proposes a PFNUL technique for acquiring the time spectrum of dual-energy neutrons(epithermal and thermal neutrons)from the upper and lower detection structures and establishes a novel uranium quantification algorithm based on the ratio of epithermal and thermal neutron time windows(E/T)via a mathematical-physical modeling derivation.Through simulations on well-logging models with di erent uranium contents,the starting and stopping times of the time window(Δt)for uranium quantification in the dual-energy neutron time spectrum are determined to be 200 and 800μs,respectively.The minimum radius and height of the model wells are 60 and 120 cm,respectively,and the E/T values in the time window show an excellent linear relationship with the uranium content.The scale factor is K_(E/T)=1.92 and R^(2)=0.999,which verifies the validity of the E/T uranium quantification algorithm.In addition,experiments were carried out in the Nu series of uranium standard model wells,and the results showed that under di erent neutron source yields,the E/T-based uranium quantification method reduced the relative standard deviation of the scale factor of the uranium content from 33.41%to 1.09%,compared with a single epithermal neutron quantification method.These results prove that the E/T value uranium quantification method is una ected by the change in the neutron source yield,e ectively improves the accuracy and service life of the logging instrument,and has great scientific and popularization value.
基金supported by the National Natural Science Foundation of China(Nos.12175170 and 11675066)。
文摘The study of uranium isotopes plays a crucial role in advancing our knowledge of nuclear physics,particularly in the realm of isospin and exotic nuclei.This study focused on the ground-state properties of uranium isotopes ranging from A=203 to A=305.The key physical quantities examined included binding energy,quadrupole deformation,isotopic displacement,single-particle energy levels,and nucleon density distributions.Recent experimental advancements in uranium isotope studies have emphasized the indispensable role of theoretical models in interpreting experimental data.Moreover,the industrial applications of uranium—especially in nuclear energy production and weapons development—underscore the importance and necessity of accurate theoretical insights.The framework of the finite-range droplet model(FRDM)was utilized for comparative analysis because its predictions closely align with the experimental results.Through an analysis of the single-particle energy levels and continuous-state occupancy,this study identified 207 U as the proton drip line nucleus.This research not only deepens our understanding of uranium isotopes but also provides a solid theoretical foundation to guide future experimental investigations.
基金funded by the project initiated by the China Geological Survey“Investigation of sandstone-type uranium deposits in the Ordos and Qaidam Basins”(No.DD20190119)the National Key Research and Development Project(No.2018YFC0604200)from the Ministry of Science and Technology of the International Geoscience Programme(No.IGCP675),which is a joint endeavor of UNESCO and IUGS。
文摘The Erlian Basin is one of the most important multi-energy basins in China.The Baiyanhua area of the Chuanjing depression in the western Erlian Basin has recently become a favorable area for new progress in sandstone-type uranium prospecting.However,the Cretaceous source-to-sink evolution of the Chuanjing depression in the Erlian Basin is poorly known.This paper presents the systematic geochemical and zircon U-Pb studies on the Saihantala Formation and Erlian Formation in the Baiyanhua area.The data obtained are functionally important for revealing the provenance and tectonic setting of the source rocks.The results show that the upper part of the Saihantala Formation and the lower part of the Erlian Formation are mainly composed of felsic sedimentary rocks.The source rocks originated from a continental margin arc environment in terms of tectonic setting.The detrital zircons ages have the dominant populations at ca.250-270 Ma,with two subdominant age groups at ca.1400-1800 and 1900-2100 Ma,respectively.Combined with the tectono-sedimentary evolution of the Chuanjing depression,we conclude that:(1)the provenance of the Cretaceous strata was mostly sourced from the Baiyanhua uplift;(2)the water depth became shallow in the Southern Sangendalai sag during the middle period of Saihantala,further preventing the formation of coal beds;(3)the formation of Baiyanhua uplift might provide the beneficial tectonic condition for uranium mineralization in the upper Saihantala Formation in southern Sangendalai sag.This is significant for us to understand the space allocation of coal and uranium in Chuanjing depression and evaluate the uranium metallogenic prospects in southern Sangendalai sag.