The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among ...The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.展开更多
Surface/underwater target classification is a key topic in marine information research.However,the complex underwater environment,coupled with the diversity of target types and their variable characteristics,presents ...Surface/underwater target classification is a key topic in marine information research.However,the complex underwater environment,coupled with the diversity of target types and their variable characteristics,presents significant challenges for classifier design.For shallow-water waveguides with a negative thermocline,a residual neural network(ResNet)model based on the sound field elevation structure is constructed.This model demonstrates robust classification performance even when facing low signal-to-noise ratios and environmental mismatches.Meanwhile,to address the reduced generalization ability caused by limited labeled acoustic data,an improved ResNet model based on unsupervised domain adaptation(“proposed UDA-ResNet”)is further constructed.This model incorporates data on simulated elevation structures of the sound field to augment the training process.Adversarial training is employed to extract domain-invariant features from simulated and trial data.These strategies help reduce the negative impact caused by domain differences.Experimental results demonstrate that the proposed method shows strong surface/underwater target classification ability under limited sample sizes,thus confirming its feasibility and effectiveness.展开更多
Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived chall...Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.展开更多
Determining an optimal sample size is a key step in designing field surveys,and is particularly important for detecting the spatial pattern of highly variable properties such as soil organic carbon(SOC).Based on 550 s...Determining an optimal sample size is a key step in designing field surveys,and is particularly important for detecting the spatial pattern of highly variable properties such as soil organic carbon(SOC).Based on 550 soil sampling points in the nearsurface layer(0 to 20 cm)in a representative region of northern China's agro-pastoral ecotone,we studied effects of four interpolation methods such as ordinary kriging(OK),universal kriging(UK),inverse distance weighting(IDW)and radial basis function(RBF)and random subsampling(50,100,200,300,400,and 500)on the prediction accuracy of SOC estimation.When the Shannon's Diversity Index(SHDI)and Shannon's Evenness Index(SHEI)was 2.01 and 0.67,the OK method appeared to be a superior method,which had the smallest root mean square error(RMSE)and the mean error(ME)nearest to zero.On the contrary,the UK method performed poorly for the interpolation of SOC in the present study.The sample size of 200 had the most accurate prediction;50 sampling points produced the worst prediction accuracy.Thus,we used 200 samples to estimate the study area's soil organic carbon density(SOCD)by the OK method.The total SOC storage to a depth of 20 cm in the study area was 117.94 Mt,and its mean SOCD was 2.40 kg/m2.The SOCD kg/(C⋅m2)of different land use types were in the following order:woodland(3.29)>grassland(2.35)>cropland(2.19)>sandy land(1.55).展开更多
The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs.A number of estimators of heritability about important economic traits in many ...The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs.A number of estimators of heritability about important economic traits in many marine mollusks are available in the literature,however very few research have evaluated about the accuracy of genetic parameters estimated with different family structures.Thus,in the present study,the effect of parent sample size for estimating the precision of genetic parameters of four growth traits in clam M.meretrix by factorial designs were analyzed through restricted maximum likelihood(REML) and Bayesian.The results showed that the average estimated heritabilities of growth traits obtained from REML were 0.23-0.32 for 9 and 16 full-sib families and 0.19-0.22 for 25 full-sib families.When using Bayesian inference,the average estimated heritabilities were0.11-0.12 for 9 and 16 full-sib families and 0.13-0.16 for 25 full-sib families.Compared with REML,Bayesian got lower heritabilities,but still remained at a medium level.When the number of parents increased from 6 to 10,the estimated heritabilities were more closed to 0.20 in REML and 0.12 in Bayesian inference.Genetic correlations among traits were positive and high and had no significant difference between different sizes of designs.The accuracies of estimated breeding values from the 9 and 16 families were less precise than those from 25 families.Our results provide a basic genetic evaluation for growth traits and should be useful for the design and operation of a practical selective breeding program in the clam M.meretrix.展开更多
To clarify the most appropriate sample size for obtaining phenotypic data for a single line,we investigated the main-effect QTL(M-QTL) of a quantitative trait plant height(ph) in a recombinant inbred line(RIL) populat...To clarify the most appropriate sample size for obtaining phenotypic data for a single line,we investigated the main-effect QTL(M-QTL) of a quantitative trait plant height(ph) in a recombinant inbred line(RIL) population of rice(derived from the cross between Xieqingzao B and Zhonghui 9308) using five individual plants in 2006 and 2009.Twenty-six ph phenotypic datasets from the completely random combinations of 2,3,4,and 5 plants in a single line,and five ph phenotypic datasets from five individual plants were used to detect the QTLs.Fifteen M-QTLs were detected by 1 to 31 datasets.Of these,qph7a was detected repeatedly by all the 31 ph datasets in 2006 and explained 11.67% to 23.93% of phenotypic variation;qph3 was detected repeatedly by all the 31 datasets and explained 5.21% to 7.93% and 11.51% to 24.46% of phenotypic variance in 2006 and 2009,respectively.The results indicate that the M-QTL for a quantitative trait could be detected repeatedly by the phenotypic values from 5 individual plants and 26 sets of completely random combinations of phenotypic data within a single line in an RIL population under different environments.The sample size for a single line of the RIL population did not affect the efficiency for identification of stably expressed M-QTLs.展开更多
This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of t...This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.展开更多
In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resa...In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resampling method under some conditions. The determination of sample size by bootstrap method is also discussed, and a simulation is made to verify the accuracy of the proposed method. The simulation results show that the sample size based on bootstrapping is smaller than that based on central limit theorem.展开更多
Species distribution patterns is one of the important topics in ecology and biological conservation.Although species distribution models have been intensively used in the research,the effects of spatial associations a...Species distribution patterns is one of the important topics in ecology and biological conservation.Although species distribution models have been intensively used in the research,the effects of spatial associations and spatial dependence have been rarely taken into account in the modeling processes.Recently,Joint Species Distribution Models(JSDMs)offer the opportunity to consider both environmental factors and interspecific relationships as well as the role of spatial structures.This study uses the HMSC(Hierarchical Modelling of Species Communities)framework to model the multispecies distribution of a marine fish assemblage,in which spatial associations and spatial dependence is deliberately accounted for.Three HMSC models were implemented with different structures of random effects to address the existence of spatial associations and spatial dependence,and the predictive performances at different levels of sample sizes were analyzed in the assessment.The results showed that the models with random effects could account for a larger proportion of explainable variance(32.8%),and particularly the spatial random effect model provided the best predictive performances(R_(mean)^(2)=0.31),indicating that spatial random effects could substantially influence the results of the joint species distribution.Increasing sample size had a strong effect(R_(mean)^(2)=0.24-0.31)on the predictive accuracy of the spatially-structured model than on the other models,suggesting that optimal model selection should be dependent on sample size.This study highlights the importance of incorporating spatial random effects for JSDM predictions and suggests that the choice of model structures should consider the data quality across species.展开更多
Conventional soil maps(CSMs)often have multiple soil types within a single polygon,which hinders the ability of machine learning to accurately predict soils.Soil disaggregation approaches are commonly used to improve ...Conventional soil maps(CSMs)often have multiple soil types within a single polygon,which hinders the ability of machine learning to accurately predict soils.Soil disaggregation approaches are commonly used to improve the spatial and attribute precision of CSMs.The approach disaggregation and harmonization of soil map units through resampled classification trees(DSMART)is popular but computationally intensive,as it generates and assigns synthetic samples to soil series based on the areal coverage information of CSMs.Alternatively,the disaggregation approach pure polygon disaggregation(PPD)assigns soil series based solely on the proportions of soil series in pure polygons in CSMs.This study compared these two disaggregation approaches by applying them to a CSM of Middlesex County,Ontario,Canada.Four different sampling methods were used:two sampling designs,simple random sampling(SRS)and conditional Latin hypercube sampling(cLHS),with two sample sizes(83100 and 19420 samples per sampling plan),both based on an area-weighted approach.Two machine learning algorithms(MLAs),C5.0 decision tree(C5.0)and random forest(RF),were applied to the disaggregation approaches to compare the disaggregation accuracy.The accuracy assessment utilized a set of 500 validation points obtained from the Middlesex County soil survey report.The MLA C5.0(Kappa index=0.58–0.63)showed better performance than RF(Kappa index=0.53–0.54)based on the larger sample size,and PPD with C5.0 based on the larger sample size was the best-performing(Kappa index=0.63)approach.Based on the smaller sample size,both cLHS(Kappa index=0.41–0.48)and SRS(Kappa index=0.40–0.47)produced similar accuracy results.The disaggregation approach PPD exhibited lower processing capacity and time demands(1.62–5.93 h)while yielding maps with lower uncertainty as compared to DSMART(2.75–194.2 h).For CSMs predominantly composed of pure polygons,utilizing PPD for soil series disaggregation is a more efficient and rational choice.However,DSMART is the preferable approach for disaggregating soil series that lack pure polygon representations in the CSMs.展开更多
Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fag...Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fagus orientalis Lipsky),a widespread species in the Hyrcanian region.Assessing the impacts of plot size on species diversity is fundamental for an ecosystem-based approach to forest management.This study determined the relation of species diversity and plot size by investigating species richness and abundance of both canopy and forest floor.Two hundred and fifty-six sample plots of 625 m^(2) each were layout in a grid pattern across 16 ha.Base plots(25 m×25 m)were integrated in different scales to investigate the effect of plot size on species diversity.The total included nine plots of 0.063,0.125,0.188,0.250,0.375,0.500,0.563,0.750 and 1 ha.Ten biodiversity indices were calculated.The results show that species richness in the different plot sizes was less than the actual value.The estimated value of the Simpson species diversity index was not significantly different from actual values for both canopy and forest floor diversity.The coefficient of variation of this index for the 1-ha sample plot showed the lowest amount across different plot sizes.Inverse Hill species diversity was insignificant difference across different plot sizes with an area greater than 0.500 ha.The modified Hill evenness index for the 1-ha sample size was a correct estimation of the 16-ha for both canopy and forest floor;however,the precision estimation was higher for the canopy layer.All plots greater than 0.250-ha provided an accurate estimation of the Camargo evenness index for forest floor species,but was inaccurate across different plot sizes for the canopy layer.The results indicate that the same plot size did not have the same effect across species diversity measurements.Our results show that correct estimation of species diversity measurements is related to the selection of appropriate indicators and plot size to increase the accuracy of the estimate so that the cost and time of biodiversity management may be reduced.展开更多
Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample si...Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample size (SSS) property of face recognition. To solve the two problems,local Bagging (L-Bagging) is proposed to simultaneously make Bagging apply to both nearest neighbor classifiers and face recognition. The major difference between L-Bagging and Bagging is that L-Bagging performs the bootstrap sampling on each local region partitioned from the original face image rather than the whole face image. Since the dimensionality of local region is usually far less than the number of samples and the component classifiers are constructed just in different local regions,L-Bagging deals with SSS problem and generates more diverse component classifiers. Experimental results on four standard face image databases (AR,Yale,ORL and Yale B) indicate that the proposed L-Bagging method is effective and robust to illumination,occlusion and slight pose variation.展开更多
The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of N...The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 era) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.展开更多
Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well ...Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well under conditions of large sample size and complete failure data,which lead to large deviation under conditions of small sample size and zero?failure data. To improve this problem,a new Bayesian method is proposed. Based on the characteristics of the solenoid valve in the braking system of a high?speed train,the modified Weibull distribution is selected to describe the failure rate over the entire lifetime. Based on the assumption of a binomial distribution for the failure probability at censored time,a concave method is employed to obtain the relationships between accumulation failure prob?abilities. A numerical simulation is performed to compare the results of the proposed method with those obtained from maximum likelihood estimation,and to illustrate that the proposed Bayesian model exhibits a better accuracy for the expectation value when the sample size is less than 12. Finally,the robustness of the model is demonstrated by obtaining the reliability indicators for a numerical case involving the solenoid valve of the braking system,which shows that the change in the reliability and failure rate among the di erent hyperparameters is small. The method is provided to avoid misleading of subjective information and improve accuracy of reliability assessment under condi?tions of small sample size and zero?failure data.展开更多
Knowledge on spatial distribution and sampling size optimization of soil copper (Cu) could lay solid foundations for environmetal quality survey of agricultural soils at county scale. In this investigation, cokrigin...Knowledge on spatial distribution and sampling size optimization of soil copper (Cu) could lay solid foundations for environmetal quality survey of agricultural soils at county scale. In this investigation, cokriging method was used to conduct the interpolation of Cu concentraiton in cropland soil in Shuangliu County, Sichuan Province, China. Based on the original 623 physicochmically measured soil samples, 560, 498, and 432 sub-samples were randomly selected as target variable and soil organic matter (SOM) of the whole original samples as auxiliary variable. Interpolation results using Cokriging under different sampling numbers were evaluated for their applicability in estimating the spatial distribution of soil Cu at county sacle. The results showed that the root mean square error (RMSE) produced by Cokriging decreased from 0.9 to 7.77%, correlation coefficient between the predicted values and the measured increased from 1.76 to 9.76% in comparison with the ordinary Kriging under the corresponding sample sizes. The prediction accuracy using Cokriging was still higher than original 623 data using ordinary Kriging even as sample size reduced 10%, and their interpolation maps were highly in agreement. Therefore, Cokriging was proven to be a more accurate and economic method which could provide more information and benefit for the studies on spatial distribution of soil pollutants at county scale.展开更多
The development of a core collection could enhance the utilization of germplasm collections in crop improvement programs and simplify their management. Selection of an appropriate sampling strategy is an important pre...The development of a core collection could enhance the utilization of germplasm collections in crop improvement programs and simplify their management. Selection of an appropriate sampling strategy is an important prerequisite to construct a core collection with appropriate size in order to adequately represent the genetic spectrum and maximally capture the genetic diversity in available crop collections. The present study was initiated to construct nested core collections to determine the appropriate sample size to represent the genetic diversity of rice landrace collection based on 15 quantitative traits and 34 qualitative traits of 2 262 rice accessions. The results showed that 50-225 nested core collections, whose sampling rate was 2.2%-9.9%, were sufficient to maintain the maximum genetic diversity of the initial collections. Of these, 150 accessions (6.6%) could capture the maximal genetic diversity of the initial collection. Three data types, i.e. qualitative traits (QT1), quantitative traits (QT2) and integrated qualitative and quantitative traits (QTT), were compared for their efficiency in constructing core collections based on the weighted pair-group average method combined with stepwise clustering and preferred sampling on adjusted Euclidean distances. Every combining scheme constructed eight rice core collections (225, 200, 175, 150, 125, 100, 75 and 50). The results showed that the QTT data was the best in constructing a core collection as indicated by the genetic diversity of core collections. A core collection constructed only on the information of QT1 could not represent the initial collection effectively. QTT should be used together to construct a productive core collection.展开更多
In order to investigate the effect of sample size on the dynamic torsional behaviour of the 2A12 aluminium alloy. In this paper, torsional split Hopkinson bar tests are conducted on this alloy with different sample di...In order to investigate the effect of sample size on the dynamic torsional behaviour of the 2A12 aluminium alloy. In this paper, torsional split Hopkinson bar tests are conducted on this alloy with different sample dimensions. It is found that with the decreasing gauge length and thickness, the tested yield strength increases. However, the sample innerlouter diameter has little effect on the dynamic torsional behaviour. Based on the finite element method, the stress states in the alloy with different sample sizes are analysed. Due to the effect of stress concentration zone (SCZ), the shorter sample has a higher yield stress. Furthermore, the stress distributes more uniformly in the thinner sample, which leads to the higher tested yield stress. According to the experimental and simulation analysis, some suggestions on choosing the sample size are given as well.展开更多
A novel combined personalized feature framework is proposed for face recognition (FR). In the framework, the proposed linear discriminant analysis (LDA) makes use of the null space of the within-class scatter matrix e...A novel combined personalized feature framework is proposed for face recognition (FR). In the framework, the proposed linear discriminant analysis (LDA) makes use of the null space of the within-class scatter matrix effectively, and Global feature vectors (PCA-transformed) and local feature vectors (Gabor wavelet-transformed) are integrated by complex vectors as input feature of improved LDA. The proposed method is compared to other commonly used FR methods on two face databases (ORL and UMIST). Results demonstrated that the performance of the proposed method is superior to that of traditional FR ap- proaches展开更多
In the October 2014 publication of JAMA,Dr.Hinman and colleagues published the study"Acupuncture for Chronic Knee Pain:A Randomized Clinical Trial,"in which the authors concluded that"in patients older than50 year...In the October 2014 publication of JAMA,Dr.Hinman and colleagues published the study"Acupuncture for Chronic Knee Pain:A Randomized Clinical Trial,"in which the authors concluded that"in patients older than50 years with moderate or severe chronic knee pain,neither laser nor needle acupuncture conferred benefi t over sham for pain or function.Our fi ndings do not support acupuncture[1]展开更多
This study used Ecopath model of the Jiaozhou Bay as an example to evaluate the effect of stomach sample size of three fish species on the projection of this model. The derived ecosystem indices were classified into t...This study used Ecopath model of the Jiaozhou Bay as an example to evaluate the effect of stomach sample size of three fish species on the projection of this model. The derived ecosystem indices were classified into three categories:(1) direct indices, like the trophic level of species, influenced by stomach sample size directly;(2)indirect indices, like ecology efficiency(EE) of invertebrates, influenced by the multiple prey-predator relationships;and(3) systemic indices, like total system throughout(TST), describing the status of the whole ecosystem. The influences of different stomach sample sizes on these indices were evaluated. The results suggest that systemic indices of the ecosystem model were robust to stomach sample sizes, whereas specific indices related to species were indicated to be with low accuracy and precision when stomach samples were insufficient.The indices became more uncertain when the stomach sample sizes varied for more species. This study enhances the understanding of how the quality of diet composition data influences ecosystem modeling outputs. The results can also guide the design of stomach content analysis for developing ecosystem models.展开更多
基金supported by the Fundamental Research Funds of the Chinese Academy of Forestry(CAFYBB2020QB004)the National Natural Science Foundation of China(41971038,32171559,U20A2085,and U21A2005).
文摘The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.
基金supported by the National Natural Science Foundation of China(Grant Nos.62471024 and 62301183)the Open Research Fund of Hanjiang Laboratory(KF2024001).
文摘Surface/underwater target classification is a key topic in marine information research.However,the complex underwater environment,coupled with the diversity of target types and their variable characteristics,presents significant challenges for classifier design.For shallow-water waveguides with a negative thermocline,a residual neural network(ResNet)model based on the sound field elevation structure is constructed.This model demonstrates robust classification performance even when facing low signal-to-noise ratios and environmental mismatches.Meanwhile,to address the reduced generalization ability caused by limited labeled acoustic data,an improved ResNet model based on unsupervised domain adaptation(“proposed UDA-ResNet”)is further constructed.This model incorporates data on simulated elevation structures of the sound field to augment the training process.Adversarial training is employed to extract domain-invariant features from simulated and trial data.These strategies help reduce the negative impact caused by domain differences.Experimental results demonstrate that the proposed method shows strong surface/underwater target classification ability under limited sample sizes,thus confirming its feasibility and effectiveness.
文摘Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.
基金This research was supported by the National Key R and D Program of China(2016YFC0500901 and 2016YFC0500907)the National Natural Science Foundation of China(Grant Nos.31971466 and 41807525)the One Hundred Person Project of the Chinese Academy of Sciences(Y551821).
文摘Determining an optimal sample size is a key step in designing field surveys,and is particularly important for detecting the spatial pattern of highly variable properties such as soil organic carbon(SOC).Based on 550 soil sampling points in the nearsurface layer(0 to 20 cm)in a representative region of northern China's agro-pastoral ecotone,we studied effects of four interpolation methods such as ordinary kriging(OK),universal kriging(UK),inverse distance weighting(IDW)and radial basis function(RBF)and random subsampling(50,100,200,300,400,and 500)on the prediction accuracy of SOC estimation.When the Shannon's Diversity Index(SHDI)and Shannon's Evenness Index(SHEI)was 2.01 and 0.67,the OK method appeared to be a superior method,which had the smallest root mean square error(RMSE)and the mean error(ME)nearest to zero.On the contrary,the UK method performed poorly for the interpolation of SOC in the present study.The sample size of 200 had the most accurate prediction;50 sampling points produced the worst prediction accuracy.Thus,we used 200 samples to estimate the study area's soil organic carbon density(SOCD)by the OK method.The total SOC storage to a depth of 20 cm in the study area was 117.94 Mt,and its mean SOCD was 2.40 kg/m2.The SOCD kg/(C⋅m2)of different land use types were in the following order:woodland(3.29)>grassland(2.35)>cropland(2.19)>sandy land(1.55).
基金The National High Technology Research and Development Program(863 program)of China under contract No.2012AA10A410the Zhejiang Science and Technology Project of Agricultural Breeding under contract No.2012C12907-4the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology under contract No.2015ASKJ02
文摘The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs.A number of estimators of heritability about important economic traits in many marine mollusks are available in the literature,however very few research have evaluated about the accuracy of genetic parameters estimated with different family structures.Thus,in the present study,the effect of parent sample size for estimating the precision of genetic parameters of four growth traits in clam M.meretrix by factorial designs were analyzed through restricted maximum likelihood(REML) and Bayesian.The results showed that the average estimated heritabilities of growth traits obtained from REML were 0.23-0.32 for 9 and 16 full-sib families and 0.19-0.22 for 25 full-sib families.When using Bayesian inference,the average estimated heritabilities were0.11-0.12 for 9 and 16 full-sib families and 0.13-0.16 for 25 full-sib families.Compared with REML,Bayesian got lower heritabilities,but still remained at a medium level.When the number of parents increased from 6 to 10,the estimated heritabilities were more closed to 0.20 in REML and 0.12 in Bayesian inference.Genetic correlations among traits were positive and high and had no significant difference between different sizes of designs.The accuracies of estimated breeding values from the 9 and 16 families were less precise than those from 25 families.Our results provide a basic genetic evaluation for growth traits and should be useful for the design and operation of a practical selective breeding program in the clam M.meretrix.
基金supported by the grants from the Chinese Natural Science Foundation(Grant No.31071398)the National Program on Super Rice Breeding,the Ministry of Agriculture(Grant No.2010-3)+1 种基金National High Technology Research and Development Program of China(Grant No.2006AA10Z1E8)the Provincial Program of ‘8812’,Zhejiang Province,China(Grant No.8812-1)
文摘To clarify the most appropriate sample size for obtaining phenotypic data for a single line,we investigated the main-effect QTL(M-QTL) of a quantitative trait plant height(ph) in a recombinant inbred line(RIL) population of rice(derived from the cross between Xieqingzao B and Zhonghui 9308) using five individual plants in 2006 and 2009.Twenty-six ph phenotypic datasets from the completely random combinations of 2,3,4,and 5 plants in a single line,and five ph phenotypic datasets from five individual plants were used to detect the QTLs.Fifteen M-QTLs were detected by 1 to 31 datasets.Of these,qph7a was detected repeatedly by all the 31 ph datasets in 2006 and explained 11.67% to 23.93% of phenotypic variation;qph3 was detected repeatedly by all the 31 datasets and explained 5.21% to 7.93% and 11.51% to 24.46% of phenotypic variance in 2006 and 2009,respectively.The results indicate that the M-QTL for a quantitative trait could be detected repeatedly by the phenotypic values from 5 individual plants and 26 sets of completely random combinations of phenotypic data within a single line in an RIL population under different environments.The sample size for a single line of the RIL population did not affect the efficiency for identification of stably expressed M-QTLs.
基金the Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB660012/0168)managed under Rajamangala University of Technology Thanyaburi(FRB66E0646O.4).
文摘This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.
基金The Science Research Start-up Foundation for Young Teachers of Southwest Jiaotong University(No.2007Q091)
文摘In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resampling method under some conditions. The determination of sample size by bootstrap method is also discussed, and a simulation is made to verify the accuracy of the proposed method. The simulation results show that the sample size based on bootstrapping is smaller than that based on central limit theorem.
基金supported by the National Key R&D Program of China(No.2022YFD2401301)。
文摘Species distribution patterns is one of the important topics in ecology and biological conservation.Although species distribution models have been intensively used in the research,the effects of spatial associations and spatial dependence have been rarely taken into account in the modeling processes.Recently,Joint Species Distribution Models(JSDMs)offer the opportunity to consider both environmental factors and interspecific relationships as well as the role of spatial structures.This study uses the HMSC(Hierarchical Modelling of Species Communities)framework to model the multispecies distribution of a marine fish assemblage,in which spatial associations and spatial dependence is deliberately accounted for.Three HMSC models were implemented with different structures of random effects to address the existence of spatial associations and spatial dependence,and the predictive performances at different levels of sample sizes were analyzed in the assessment.The results showed that the models with random effects could account for a larger proportion of explainable variance(32.8%),and particularly the spatial random effect model provided the best predictive performances(R_(mean)^(2)=0.31),indicating that spatial random effects could substantially influence the results of the joint species distribution.Increasing sample size had a strong effect(R_(mean)^(2)=0.24-0.31)on the predictive accuracy of the spatially-structured model than on the other models,suggesting that optimal model selection should be dependent on sample size.This study highlights the importance of incorporating spatial random effects for JSDM predictions and suggests that the choice of model structures should consider the data quality across species.
基金the Ontario Ministry of Agriculture,Food and Rural Affairs,Canada,who supported this project by providing updated soil information on Ontario and Middlesex Countysupported by the Natural Science and Engineering Research Council of Canada(No.RGPIN-2014-4100)。
文摘Conventional soil maps(CSMs)often have multiple soil types within a single polygon,which hinders the ability of machine learning to accurately predict soils.Soil disaggregation approaches are commonly used to improve the spatial and attribute precision of CSMs.The approach disaggregation and harmonization of soil map units through resampled classification trees(DSMART)is popular but computationally intensive,as it generates and assigns synthetic samples to soil series based on the areal coverage information of CSMs.Alternatively,the disaggregation approach pure polygon disaggregation(PPD)assigns soil series based solely on the proportions of soil series in pure polygons in CSMs.This study compared these two disaggregation approaches by applying them to a CSM of Middlesex County,Ontario,Canada.Four different sampling methods were used:two sampling designs,simple random sampling(SRS)and conditional Latin hypercube sampling(cLHS),with two sample sizes(83100 and 19420 samples per sampling plan),both based on an area-weighted approach.Two machine learning algorithms(MLAs),C5.0 decision tree(C5.0)and random forest(RF),were applied to the disaggregation approaches to compare the disaggregation accuracy.The accuracy assessment utilized a set of 500 validation points obtained from the Middlesex County soil survey report.The MLA C5.0(Kappa index=0.58–0.63)showed better performance than RF(Kappa index=0.53–0.54)based on the larger sample size,and PPD with C5.0 based on the larger sample size was the best-performing(Kappa index=0.63)approach.Based on the smaller sample size,both cLHS(Kappa index=0.41–0.48)and SRS(Kappa index=0.40–0.47)produced similar accuracy results.The disaggregation approach PPD exhibited lower processing capacity and time demands(1.62–5.93 h)while yielding maps with lower uncertainty as compared to DSMART(2.75–194.2 h).For CSMs predominantly composed of pure polygons,utilizing PPD for soil series disaggregation is a more efficient and rational choice.However,DSMART is the preferable approach for disaggregating soil series that lack pure polygon representations in the CSMs.
基金funded by Gorgan University of Agricultural Sciences and Natural Resources(grant number 9318124503).
文摘Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fagus orientalis Lipsky),a widespread species in the Hyrcanian region.Assessing the impacts of plot size on species diversity is fundamental for an ecosystem-based approach to forest management.This study determined the relation of species diversity and plot size by investigating species richness and abundance of both canopy and forest floor.Two hundred and fifty-six sample plots of 625 m^(2) each were layout in a grid pattern across 16 ha.Base plots(25 m×25 m)were integrated in different scales to investigate the effect of plot size on species diversity.The total included nine plots of 0.063,0.125,0.188,0.250,0.375,0.500,0.563,0.750 and 1 ha.Ten biodiversity indices were calculated.The results show that species richness in the different plot sizes was less than the actual value.The estimated value of the Simpson species diversity index was not significantly different from actual values for both canopy and forest floor diversity.The coefficient of variation of this index for the 1-ha sample plot showed the lowest amount across different plot sizes.Inverse Hill species diversity was insignificant difference across different plot sizes with an area greater than 0.500 ha.The modified Hill evenness index for the 1-ha sample size was a correct estimation of the 16-ha for both canopy and forest floor;however,the precision estimation was higher for the canopy layer.All plots greater than 0.250-ha provided an accurate estimation of the Camargo evenness index for forest floor species,but was inaccurate across different plot sizes for the canopy layer.The results indicate that the same plot size did not have the same effect across species diversity measurements.Our results show that correct estimation of species diversity measurements is related to the selection of appropriate indicators and plot size to increase the accuracy of the estimate so that the cost and time of biodiversity management may be reduced.
文摘Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample size (SSS) property of face recognition. To solve the two problems,local Bagging (L-Bagging) is proposed to simultaneously make Bagging apply to both nearest neighbor classifiers and face recognition. The major difference between L-Bagging and Bagging is that L-Bagging performs the bootstrap sampling on each local region partitioned from the original face image rather than the whole face image. Since the dimensionality of local region is usually far less than the number of samples and the component classifiers are constructed just in different local regions,L-Bagging deals with SSS problem and generates more diverse component classifiers. Experimental results on four standard face image databases (AR,Yale,ORL and Yale B) indicate that the proposed L-Bagging method is effective and robust to illumination,occlusion and slight pose variation.
基金supported by the Innovation Team Pro-gram of Chinese Academy of Sciencesthe Program for Innovative Research Team in University (No IRT0749)
文摘The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 era) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.
基金Supported by National Natural Science Foundation of China(Grant No.51175028)Great Scholars Training Project(Grant No.CIT&TCD20150312)Beijing Recognized Talent Project(Grant No.2014018)
文摘Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well under conditions of large sample size and complete failure data,which lead to large deviation under conditions of small sample size and zero?failure data. To improve this problem,a new Bayesian method is proposed. Based on the characteristics of the solenoid valve in the braking system of a high?speed train,the modified Weibull distribution is selected to describe the failure rate over the entire lifetime. Based on the assumption of a binomial distribution for the failure probability at censored time,a concave method is employed to obtain the relationships between accumulation failure prob?abilities. A numerical simulation is performed to compare the results of the proposed method with those obtained from maximum likelihood estimation,and to illustrate that the proposed Bayesian model exhibits a better accuracy for the expectation value when the sample size is less than 12. Finally,the robustness of the model is demonstrated by obtaining the reliability indicators for a numerical case involving the solenoid valve of the braking system,which shows that the change in the reliability and failure rate among the di erent hyperparameters is small. The method is provided to avoid misleading of subjective information and improve accuracy of reliability assessment under condi?tions of small sample size and zero?failure data.
基金supported by the Youth Foundation from Sichuan Education Bureau (2006B009)Key Project from Sichuan Education Bureau (2006A008)Sichuan Youth Science & Technology Foundation,China (06ZQ026-020)
文摘Knowledge on spatial distribution and sampling size optimization of soil copper (Cu) could lay solid foundations for environmetal quality survey of agricultural soils at county scale. In this investigation, cokriging method was used to conduct the interpolation of Cu concentraiton in cropland soil in Shuangliu County, Sichuan Province, China. Based on the original 623 physicochmically measured soil samples, 560, 498, and 432 sub-samples were randomly selected as target variable and soil organic matter (SOM) of the whole original samples as auxiliary variable. Interpolation results using Cokriging under different sampling numbers were evaluated for their applicability in estimating the spatial distribution of soil Cu at county sacle. The results showed that the root mean square error (RMSE) produced by Cokriging decreased from 0.9 to 7.77%, correlation coefficient between the predicted values and the measured increased from 1.76 to 9.76% in comparison with the ordinary Kriging under the corresponding sample sizes. The prediction accuracy using Cokriging was still higher than original 623 data using ordinary Kriging even as sample size reduced 10%, and their interpolation maps were highly in agreement. Therefore, Cokriging was proven to be a more accurate and economic method which could provide more information and benefit for the studies on spatial distribution of soil pollutants at county scale.
基金supported by the National Natural Science Foundation of China (Grant No. 30700494)the Principal Fund of South China Agricultural University, China (Grant No. 2003K053)
文摘The development of a core collection could enhance the utilization of germplasm collections in crop improvement programs and simplify their management. Selection of an appropriate sampling strategy is an important prerequisite to construct a core collection with appropriate size in order to adequately represent the genetic spectrum and maximally capture the genetic diversity in available crop collections. The present study was initiated to construct nested core collections to determine the appropriate sample size to represent the genetic diversity of rice landrace collection based on 15 quantitative traits and 34 qualitative traits of 2 262 rice accessions. The results showed that 50-225 nested core collections, whose sampling rate was 2.2%-9.9%, were sufficient to maintain the maximum genetic diversity of the initial collections. Of these, 150 accessions (6.6%) could capture the maximal genetic diversity of the initial collection. Three data types, i.e. qualitative traits (QT1), quantitative traits (QT2) and integrated qualitative and quantitative traits (QTT), were compared for their efficiency in constructing core collections based on the weighted pair-group average method combined with stepwise clustering and preferred sampling on adjusted Euclidean distances. Every combining scheme constructed eight rice core collections (225, 200, 175, 150, 125, 100, 75 and 50). The results showed that the QTT data was the best in constructing a core collection as indicated by the genetic diversity of core collections. A core collection constructed only on the information of QT1 could not represent the initial collection effectively. QTT should be used together to construct a productive core collection.
基金Financial support is from the NSFC(Grant Nos.11602257,11472257,11272300,11572299)funded by the key subject"Computational Solid Mechanics"of the China Academy of Engineering Physics
文摘In order to investigate the effect of sample size on the dynamic torsional behaviour of the 2A12 aluminium alloy. In this paper, torsional split Hopkinson bar tests are conducted on this alloy with different sample dimensions. It is found that with the decreasing gauge length and thickness, the tested yield strength increases. However, the sample innerlouter diameter has little effect on the dynamic torsional behaviour. Based on the finite element method, the stress states in the alloy with different sample sizes are analysed. Due to the effect of stress concentration zone (SCZ), the shorter sample has a higher yield stress. Furthermore, the stress distributes more uniformly in the thinner sample, which leads to the higher tested yield stress. According to the experimental and simulation analysis, some suggestions on choosing the sample size are given as well.
基金Project (No. 60275023) supported by the National Natural Sci-ence Foundation of China
文摘A novel combined personalized feature framework is proposed for face recognition (FR). In the framework, the proposed linear discriminant analysis (LDA) makes use of the null space of the within-class scatter matrix effectively, and Global feature vectors (PCA-transformed) and local feature vectors (Gabor wavelet-transformed) are integrated by complex vectors as input feature of improved LDA. The proposed method is compared to other commonly used FR methods on two face databases (ORL and UMIST). Results demonstrated that the performance of the proposed method is superior to that of traditional FR ap- proaches
文摘In the October 2014 publication of JAMA,Dr.Hinman and colleagues published the study"Acupuncture for Chronic Knee Pain:A Randomized Clinical Trial,"in which the authors concluded that"in patients older than50 years with moderate or severe chronic knee pain,neither laser nor needle acupuncture conferred benefi t over sham for pain or function.Our fi ndings do not support acupuncture[1]
基金The National Natural Science Foundation of China under contract No.31772852the Fundamental Research Funds for the Central Universities under contract No.201612004。
文摘This study used Ecopath model of the Jiaozhou Bay as an example to evaluate the effect of stomach sample size of three fish species on the projection of this model. The derived ecosystem indices were classified into three categories:(1) direct indices, like the trophic level of species, influenced by stomach sample size directly;(2)indirect indices, like ecology efficiency(EE) of invertebrates, influenced by the multiple prey-predator relationships;and(3) systemic indices, like total system throughout(TST), describing the status of the whole ecosystem. The influences of different stomach sample sizes on these indices were evaluated. The results suggest that systemic indices of the ecosystem model were robust to stomach sample sizes, whereas specific indices related to species were indicated to be with low accuracy and precision when stomach samples were insufficient.The indices became more uncertain when the stomach sample sizes varied for more species. This study enhances the understanding of how the quality of diet composition data influences ecosystem modeling outputs. The results can also guide the design of stomach content analysis for developing ecosystem models.