期刊文献+
共找到2,630篇文章
< 1 2 132 >
每页显示 20 50 100
DCS-SOCP-SVM:A Novel Integrated Sampling and Classification Algorithm for Imbalanced Datasets
1
作者 Xuewen Mu Bingcong Zhao 《Computers, Materials & Continua》 2025年第5期2143-2159,共17页
When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes... When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets.The proposed method first uses a biased second-order cone programming support vectormachine(B-SOCP-SVM)to identify the support vectors(SVs)and non-support vectors(NSVs)in the imbalanced data.Then,it applies the synthetic minority over-sampling technique(SV-SMOTE)to oversample the support vectors of the minority class and uses the random under-sampling technique(NSV-RUS)multiple times to undersample the non-support vectors of the majority class.Combining the above-obtained minority class data set withmultiple majority class datasets can obtainmultiple new balanced data sets.Finally,SOCP-SVM is used to classify each data set,and the final result is obtained through the integrated algorithm.Experimental results demonstrate that the proposed method performs excellently on imbalanced datasets. 展开更多
关键词 DCS-SOCP-SVM imbalanced datasets sampling method ensemble method integrated algorithm
在线阅读 下载PDF
Scaling up the DBSCAN Algorithm for Clustering Large Spatial Databases Based on Sampling Technique 被引量:9
2
作者 Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China 2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 3.College of Remote Sensin 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期467-473,共7页
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni... Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases. 展开更多
关键词 spatial databases data mining CLUSTERING sampling DBSCAN algorithm
在线阅读 下载PDF
Iterative Learning Fault Diagnosis Algorithm for Non-uniform Sampling Hybrid System 被引量:2
3
作者 Hongfeng Tao Dapeng Chen Huizhong Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期534-542,共9页
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys... For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm. 展开更多
关键词 Equivalent fault model fault diagnosis iterative learning algorithm non-uniform sampling hybrid system virtual fault
在线阅读 下载PDF
Optimization of Process Parameters for Cracking Prevention of UHSS in Hot Stamping Based on Hammersley Sequence Sampling and Back Propagation Neural Network-Genetic Algorithm Mixed Methods 被引量:1
4
作者 menghan wang zongmin yue lie meng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第2期31-39,共9页
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B... In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible. 展开更多
关键词 HOT STAMPING CRACKING Hammersley SEQUENCE sampling BACK-PROPAGATION GENETIC algorithm
在线阅读 下载PDF
Augmented line sampling and combination algorithm for imprecise time-variant reliability analysis
5
作者 Xiukai YUAN Weiming ZHENG +1 位作者 Yunfei SHU Yiwei DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期258-274,共17页
Assessment of imprecise time-variant reliability in engineering is a critical task when accounting for both the variability of structural properties and loads over time and the presence of uncertainties involved in th... Assessment of imprecise time-variant reliability in engineering is a critical task when accounting for both the variability of structural properties and loads over time and the presence of uncertainties involved in the ambiguity of parameters simultaneously.To estimate the Imprecise Time-variant Failure Probability Function(ITFPF)and derive the imprecise reliability results as a byproduct,Adaptive Combination Augmented Line Sampling(ACALS)is proposed.It consists of three integrated features:Augmented Line Sampling(ALS),adaptive strategy,and the optimal combination.ALS is adopted as an efficient analysis tool to obtain the failure probability function w.r.t.imprecise parameters.Then,the adaptive strategy iteratively applies ALS while considering both imprecise parameters and time simultaneously.Finally,the optimal combination algorithm collects all result components in an optimal manner to minimize the Coefficient of Variance(C.o.V.)of the ITFPF estimate.Overall,the proposed ACALS method outperforms the original ALS method by efficiently estimating the ITFPF while guaranteeing a minimal C.o.V.Thus,the proposed approach can serve as an effective tool for imprecise time-variant reliability analysis in real engineering applications.Several examples are presented to demonstrate the superiority of the proposed approach in addressing the challenges of estimating the ITFPF. 展开更多
关键词 Time-variant reliability Imprecise reliability Line sampling Adaptive strategy Combination algorithm
原文传递
Potential-Decomposition Strategy in Markov Chain Monte Carlo Sampling Algorithms
6
作者 上官丹骅 包景东 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第11期854-856,共3页
We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in... We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude. 展开更多
关键词 potential-decomposition strategy Markov chain Monte Carlo sampling algorithms
在线阅读 下载PDF
Algorithm-based arterial blood sampling recognition increasing safety in point-of-care diagnostics
7
作者 Jorg Peter Wilfried Klingert +5 位作者 Kathrin Klingert Karolin Thiel Daniel Wulff Alfred Konigsrainer Wolfgang Rosenstiel Martin Schenk 《World Journal of Critical Care Medicine》 2017年第3期172-178,共7页
AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fe... AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fed as a real-time data stream to an experimental medical framework. This framework was connected to an analytical application which observes changes in systolic, diastolic and mean pressure to determine anomalies in the continuous data stream. Detection was based on an increased mean blood pressure caused by the closing of the withdrawal three-way tap and an absence of systolic and diastolic measurements during this manipulation. For evaluation of the proposed algorithm, measured data from animal studies in healthy pigs were used.RESULTS Using this novel approach for processing real-time measurement data of arterial pressure monitoring, the exact time of blood withdrawal could be successfully detected retrospectively and in real-time. The algorithm was able to detect 422 of 434(97%) blood withdrawals for blood gas analysis in the retrospective analysis of 7 study trials. Additionally, 64 sampling events for other procedures like laboratory and activated clotting time analyses were detected. The proposed algorithm achieved a sensitivity of 0.97, a precision of 0.96 and an F1 score of 0.97.CONCLUSION Arterial blood pressure monitoring data can be used toperform an accurate identification of individual blood samplings in order to reduce sample mix-ups and thereby increase patient safety. 展开更多
关键词 Blood withdrawal detection Sample dating algorithm Arterial blood gas analysis Patient monitoring Point-of-care diagnostics
暂未订购
基于LHS-SSA-BPNN的地下厂房支护优化方法
8
作者 陈雨婷 夏天倚 +3 位作者 徐云乾 包腾飞 程健悦 赵向宇 《水电能源科学》 北大核心 2025年第6期162-166,共5页
为解决传统地下厂房支护结构优化方法未考虑洞室交错的结构复杂性,以及统计回归模型难以定量地揭示支护参数与评价指标稳定性间复杂的映射关系、耗时长的问题,提出了一种基于拉丁超立方抽样方法(LHS),结合麻雀搜索算法(SSA)改进的反向... 为解决传统地下厂房支护结构优化方法未考虑洞室交错的结构复杂性,以及统计回归模型难以定量地揭示支护参数与评价指标稳定性间复杂的映射关系、耗时长的问题,提出了一种基于拉丁超立方抽样方法(LHS),结合麻雀搜索算法(SSA)改进的反向传播神经网络(BPNN)的地下厂房支护结构优化方法。该方法首先采用LHS构建样本方案,然后通过Python批量生成用于ABAQUS仿真分析的计算文件,接着将计算结果标准化成综合评价指标值作为学习样本,从锚杆长度和间距两个因素出发考虑支护参数对稳定性的影响,进一步利用SSA-BPNN构建支护参数与评价指标之间的非线性映射,最后用训练完成的SSA-BPNN模型在一定约束条件下的全局空间内搜索最优支护参数。实例分析表明,基于LHS-SSA-BPNN的支护结构优化方法能够准确搜索出最优支护参数,SSA-BPNN预测值与仿真分析结果的拟合度达96.16%,与BPNN相比性能明显提高,验证了该方法在复杂地质条件下地下厂房支护结构优化的优越性和合理性。 展开更多
关键词 地下厂房支护优化 拉丁超立方抽样 麻雀搜索算法 反向传播神经网络
原文传递
Application of a relief-optimized method for target space exteriorization sampling in landslide susceptibility assessment
9
作者 CUI Yulong DENG Qining MIAO Haibo 《Journal of Mountain Science》 2025年第9期3391-3407,共17页
Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological ... Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological conditions.Traditional sampling strategies commonly used in landslide susceptibility models can lead to a misrepresentation of the distribution of negative samples,causing a deviation from actual geological conditions.This,in turn,negatively affects the discriminative ability and generalization performance of the models.To address this issue,we propose a novel approach for selecting negative samples to enhance the quality of machine learning models.We choose the Liangshan Yi Autonomous Prefecture,located in southwestern Sichuan,China,as the case study.This area,characterized by complex terrain,frequent tectonic activities,and steep slope erosion,experiences recurrent landslides,making it an ideal setting for validating our proposed method.We calculate the contribution values of environmental factors using the relief algorithm to construct the feature space,apply the Target Space Exteriorization Sampling(TSES)method to select negative samples,calculate landslide probability values by Random Forest(RF)modeling,and then create regional landslide susceptibility maps.We evaluate the performance of the RF model optimized by the Environmental Factor Selection-based TSES(EFSTSES)method using standard performance metrics.The results indicated that the model achieved an accuracy(ACC)of 0.962,precision(PRE)of 0.961,and an area under the curve(AUC)of 0.962.These findings demonstrate that the EFSTSES-based model effectively mitigates the negative sample imbalance issue,enhances the differentiation between landslide and non-landslide samples,and reduces misclassification,particularly in geologically complex areas.These improvements offer valuable insights for disaster prevention,land use planning,and risk mitigation strategies. 展开更多
关键词 Non-landslide sample selection Relief algorithm Target Space Exteriorization sampling Landslide Susceptibility Assessment
原文传递
LHS方法在边坡可靠度分析中的应用 被引量:58
10
作者 吴振君 王水林 葛修润 《岩土力学》 EI CAS CSCD 北大核心 2010年第4期1047-1054,共8页
Monte Carlo(MC)法在目前边坡可靠度分析中是一种相对精确的方法,应用广泛,受问题限制的影响较小,适应性很强,其误差仅与标准差和样本容量有关。但其精度受随机抽样的可靠性和模拟次数制约,收敛速度慢,影响了实际使用。在极限平衡方法... Monte Carlo(MC)法在目前边坡可靠度分析中是一种相对精确的方法,应用广泛,受问题限制的影响较小,适应性很强,其误差仅与标准差和样本容量有关。但其精度受随机抽样的可靠性和模拟次数制约,收敛速度慢,影响了实际使用。在极限平衡方法的基础上,用拉丁超立方抽样(Latin hypercube sampling,LHS)方法代替MC法的随机抽样,考虑边坡参数的变异性和相关性进行边坡可靠度分析。讨论了LHS法、MC法中可靠指标的各种计算方法,建议以破坏概率、安全系数均值和标准差作为评价指标。算例显示LHS法较MC法效率上有很大改善:较少的抽样样本就能反映参数的概率分布,可靠度分析收敛快,不需要大量的模拟,因此,值得在边坡可靠度分析中推广应用。也将工程上常用的均匀设计和正交设计用于边坡可靠度分析,结果表明,正交设计结果和中心点法比较接近,而均匀设计得到的结果则是不可靠的。 展开更多
关键词 边坡稳定性 可靠度分析 拉丁超立方抽样 参数相关 评价指标
在线阅读 下载PDF
基于LHS的混凝土时效不确定性模拟研究 被引量:7
11
作者 唐红元 贾益纲 《南昌大学学报(工科版)》 CAS 2007年第1期83-86,90,共5页
采用拉丁超立方抽样(LHS)对多种混凝土时效模式的不确定性进行了模拟研究.首先总结了已有的混凝土时效模式不确定性的研究,比较了常用的三种混凝土时效模式的不确定性.然后介绍了不确定性分析的LHS模拟方法.最后采用LHS模拟了给定条件... 采用拉丁超立方抽样(LHS)对多种混凝土时效模式的不确定性进行了模拟研究.首先总结了已有的混凝土时效模式不确定性的研究,比较了常用的三种混凝土时效模式的不确定性.然后介绍了不确定性分析的LHS模拟方法.最后采用LHS模拟了给定条件的混凝土时效计算模式、混凝土材料和外部环境的不确定性,并对不同混凝土时效模式的模拟结果进行了比较.研究结果表明:在对混凝土结构的收缩不确定性预测时,采用B3模式较好;在对混凝土结构的徐变不确定性预测时,采用CEB-FIP90模式较好. 展开更多
关键词 混凝土 时效 收缩 徐变 不确定性 拉丁超立方抽样
在线阅读 下载PDF
基于改进RRT算法的机械臂路径规划
12
作者 李伟达 姜宏 +3 位作者 章翔峰 马奔驰 陈林 张鹏飞 《现代电子技术》 北大核心 2026年第1期157-162,共6页
针对快速扩展随机树(RRT)算法在机械臂路径规划中存在盲目搜索、计算时间长和冗余过程点比较多的问题,文中提出一种改进RRT算法。首先建立了固定采样函数,使得随机树的扩展更具有方向性;其次在自适应步长基础上加入动态目标偏置策略,通... 针对快速扩展随机树(RRT)算法在机械臂路径规划中存在盲目搜索、计算时间长和冗余过程点比较多的问题,文中提出一种改进RRT算法。首先建立了固定采样函数,使得随机树的扩展更具有方向性;其次在自适应步长基础上加入动态目标偏置策略,通过避免对局部区域过度搜索来提高收敛速度;最后利用固定采样点构造两棵随机树进行搜索,解决了算法扩张速度慢、收敛速度慢和盲目性的问题。简单环境下仿真结果表明:改进RRT算法相对于其他三种算法收敛时间分别减少了18.3%、30%、63.5%,路径长度分别缩短了14.1%、3.5%、41.6%;复杂环境下仿真结果表明:改进RRT算法相对于其他三种算法收敛时间分别减少了56.4%、43.3%、67.6%,路径长度分别缩短了16.1%、9.7%、34.2%。证明了改进后的算法在解决收敛速度慢和导向问题上的有效性,同时算法对复杂环境的适应性也更强。 展开更多
关键词 机械臂 路径规划 RRT算法 固定采样点 自适应步长 动态目标偏置
在线阅读 下载PDF
LHS抽样遗传算法 被引量:1
13
作者 任哲 陈明华 《皖西学院学报》 2010年第2期18-21,共4页
文献[1]研究了遗传算法的运行机理及特点,即遗传算法是一个具有定向制导的随机搜索技术,其定向制导的原则是:导向以高适应度模式为祖先的"家族"方向。以此结论为基础,利用拉丁超立方体抽样(LHS)的理论和方法,对遗传算法中的... 文献[1]研究了遗传算法的运行机理及特点,即遗传算法是一个具有定向制导的随机搜索技术,其定向制导的原则是:导向以高适应度模式为祖先的"家族"方向。以此结论为基础,利用拉丁超立方体抽样(LHS)的理论和方法,对遗传算法中的交叉操作进行了重新设计,给出了一个新的GA算法,称之为LHS遗传算法。将LHS遗传算法应用于求解优化问题,并与简单遗传算法和文献[2]中的佳点集遗传算法进行比较,通过模拟比较,可以看出新的算法不但提高了算法的收敛速度和精度,而且避免了其它方法常有的早期收敛的现象。 展开更多
关键词 遗传算法(GA) 拉丁超立方体抽样(lhs) lhs遗传算法(lhsGA)
在线阅读 下载PDF
Application of QPSO-KM Algorithm in Wine Quality Classification
14
作者 邱靖 彭莞云 +1 位作者 吴瑞武 张海涛 《Agricultural Science & Technology》 CAS 2015年第9期2045-2047,共3页
Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers.... Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers. The results showed that the evaluation data of the second group were more reliable compared with those of the first group. At the same time, the KM algorithm was optimized using the QPSO algorithm. The wine classification model was established. Compared with the other two algorithms, the QPSO-KM algorithm was more capable of searching the globally optimum solution, and it could be used to classify the wine samples. In addition,the QPSO-KM algorithm could also be used to solve the issues about clustering. 展开更多
关键词 QPSO KM algorithm Wine sample Classification model
在线阅读 下载PDF
基于不均衡样本的盾构结泥饼风险预测模型建立及实证
15
作者 辛志勇 辛伟锁 +4 位作者 阳林 徐卫超 刘远 袁潇 王树英 《城市轨道交通研究》 北大核心 2026年第1期35-41,48,共8页
[目的]基于盾构机数据的刀盘结泥饼预测在保障隧道施工安全和提高施工效率方面有重要价值。传统机器学习模型在处理此类小样本数据时,难以有效捕捉少数类别特征,导致模型倾向于学习多数类别,而忽视少数类别,从而影响预警效果。对此,有... [目的]基于盾构机数据的刀盘结泥饼预测在保障隧道施工安全和提高施工效率方面有重要价值。传统机器学习模型在处理此类小样本数据时,难以有效捕捉少数类别特征,导致模型倾向于学习多数类别,而忽视少数类别,从而影响预警效果。对此,有必要基于不均衡样本建立盾构结泥饼风险预测模型并进行实证。[方法]首先,通过特征工程剔除停机数据并识别稳定掘进段;随后,结合特征重要度评估与相关性分析,筛选用于泥饼预测的关键特征;在此基础上,将Focal Loss(焦点损失)函数嵌入LSTM(长短期记忆网络),以增强模型对少数类样本的关注。以长春某地铁盾构实际工程为例对模型预测准确性进行实证。[结果及结论]面向EPB(土压平衡盾构)原始掘进数据的预处理流程框架有效提升了数据质量。通过正交试验,确定了焦点损失函数的最佳超参数组合为:调制指数γ=1.000,直实类别对应的类别权重α_(z)=0.750。在相同数据集和超参数条件下,传统LSTM模型的性能评估指标F_(1)值为0.724,而使用基于Focal Loss的LSTM模型后,F_(1)值提高至0.982,F_(1)值的增加表明Focal Loss函数的引入有效提升了模型对不平衡样本的预测性能。 展开更多
关键词 地铁 盾构施工 盾构泥饼预测 不均衡样本 长短期记忆网络算法 焦点损失函数
在线阅读 下载PDF
小样本不平衡数据集异常双层窗口检测方法研究
16
作者 方叶彤 张伦传 《现代电子技术》 北大核心 2026年第1期137-140,共4页
当数据库的正例样本与负例样本之间存在数量级差别时,不平衡数据中存在的类重叠问题会使数据的决策边界重叠。使用单一窗口更关注数据的相似性结构而不是时间尺度的分层,导致在检测不同时间尺度的数据时几何平均值(G-mean)数值较小。为... 当数据库的正例样本与负例样本之间存在数量级差别时,不平衡数据中存在的类重叠问题会使数据的决策边界重叠。使用单一窗口更关注数据的相似性结构而不是时间尺度的分层,导致在检测不同时间尺度的数据时几何平均值(G-mean)数值较小。为此,文中提出一种小样本不平衡数据集异常双层窗口检测方法。采用改进合成少数类样本过采样技术,新建不重复少数类样本,实现小样本不平衡数据集均衡化处理;考虑数据的时间尺度,采用双层窗口将均衡化后的时序数据划分为多个子时间序列,计算斜率置信区间距离半径特征,识别异常子序列,结合K-means聚类算法从异常子序列中识别出异常数据。实验结果显示:该方法可有效实现不平衡数据集均衡化处理,精准完成不同不平衡率小样本数据集的异常数据检测,G-mean数值高于0.7,为异常数据检测提供了一种有效的解决方案。 展开更多
关键词 小样本 不平衡数据集 异常检测 双层窗口 过采样 时间序列 聚类算法 均衡化
在线阅读 下载PDF
基于改进LHS模式的可靠性设计优化
17
作者 张培培 尹子栋 《机械强度》 CAS CSCD 北大核心 2011年第3期348-352,共5页
在设计优化中,确定性优化由于没有考虑输入量的不确定性,其优化结果可能不可靠(不安全),因此基于可靠性的设计优化(reliability-based design optimization,RBDO)得到关注。然而可靠性设计优化计算量大,尤其对于高维问题。基于此,提出... 在设计优化中,确定性优化由于没有考虑输入量的不确定性,其优化结果可能不可靠(不安全),因此基于可靠性的设计优化(reliability-based design optimization,RBDO)得到关注。然而可靠性设计优化计算量大,尤其对于高维问题。基于此,提出一种新方法——改进拉丁超立方体取样(Latin hypercube sampling,LHS)方法,该方法可利用先前迭代步骤已用的取样点,从而降低计算量。其中可靠性指数通过基于漫射近似(diffuse approximation,DA)的一阶可靠性方法(first-order reliability method,FORM)计算得到。最后用两个数学实例验证该方法可以极大地降低RBDO问题的计算量。 展开更多
关键词 可靠性设计优化(reliability-based design optimization RBDO)拉丁超立方体取样一阶可靠性方法(first-order RELIABILITY method FORM)漫射近似(diffuse APPROXIMATION DA)
在线阅读 下载PDF
基于LHS与BR的风电出力场景分析研究 被引量:19
18
作者 车兵 李轩 +2 位作者 郑建勇 付慧 丁群晏 《电力工程技术》 2020年第6期213-219,共7页
为了有效分析风电出力的场景特征,文中基于风速的不确定特性,构建基于拉丁超立方抽样(LHS)与后向缩减法(BR)的场景分析模型,为快速分析任意时段的风电出力提供重要依据。文中首先分析风速特征,阐述风速符合的威布尔(Weibull)分布;其次... 为了有效分析风电出力的场景特征,文中基于风速的不确定特性,构建基于拉丁超立方抽样(LHS)与后向缩减法(BR)的场景分析模型,为快速分析任意时段的风电出力提供重要依据。文中首先分析风速特征,阐述风速符合的威布尔(Weibull)分布;其次拟合各时刻Weibull分布的参数值,提出基于LHS的场景生成方法;然后构建BR场景缩减模型,使得到的若干条曲线能够更大程度表征原始场景的变化特征;最后,通过算例分析验证文中所提方法在紧密性(CP)、间隔性(SP)以及戴维森堡丁指数(DBI)上均优于传统的K-means聚类算法,即缩减后的场景能更好地代替原始场景。 展开更多
关键词 场景生成 场景缩减 威布尔(Weibull)分布 拉丁超立方抽样(lhs) 后向缩减法(BR)
在线阅读 下载PDF
A Configuration Deactivation Algorithm for Boosting Probabilistic Roadmap Planning of Robots 被引量:4
19
作者 Mika T. Rantanen Martti Juhola 《International Journal of Automation and computing》 EI 2012年第2期155-164,共10页
We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our method intelligently deactivates some of the configurations during the learning phase and allows the p... We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our method intelligently deactivates some of the configurations during the learning phase and allows the planner to concentrate on those configurations that axe most likely going to be useful when building the roadmap. The method can be used with many of the existing sampling algorithms. We ran tests with four simulated robot problems typical in robotics literature. The sampling methods applied were purely random, using Halton numbers, Gaussian distribution, and bridge test technique. In our tests, the deactivation method clearly improved the execution times. Compared with pure random selections, the deactivation method also significantly decreased the size of the roadmap, which is a useful property to simplify roadmap planning tasks. 展开更多
关键词 Probabilistic roadmaps motion planning collision avoidance sampling algorithms robotics.
在线阅读 下载PDF
考虑非正定相关性的改进LHS概率潮流计算方法 被引量:4
20
作者 赵亦岚 陈攀 +2 位作者 周阮凯 罗平 董雨轩 《浙江电力》 2020年第4期36-42,共7页
由于LHS(拉丁超立方采样)能较大程度覆盖采样区间,因此常作为概率潮流计算中的分层抽样方法。但随着风、光等分布式能源在电力系统中渗透率的提高,以及采样对象维度的增加,使得LHS所得样本的均匀性略显不足。同时,风、光等随机变量之间... 由于LHS(拉丁超立方采样)能较大程度覆盖采样区间,因此常作为概率潮流计算中的分层抽样方法。但随着风、光等分布式能源在电力系统中渗透率的提高,以及采样对象维度的增加,使得LHS所得样本的均匀性略显不足。同时,风、光等随机变量之间的相关性也会日趋复杂。相关矩阵作为表现随机变量之间相关性的有效方式,在矩阵维度增加时会出现非正定情况,从而导致基于Cholesky分解排序变换的概率潮流计算方法无法进行。针对上述问题,提出一种考虑风、光相关性为非正定时的改进LHS概率潮流计算方法,并利用改进的IEEE 30与IEEE 118系统验证了所提方法的准确性与有效性。 展开更多
关键词 概率潮流 相关性修正 非正定 采样均匀性 改进的拉丁超立方采样
在线阅读 下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部