期刊文献+
共找到2,603篇文章
< 1 2 131 >
每页显示 20 50 100
DCS-SOCP-SVM:A Novel Integrated Sampling and Classification Algorithm for Imbalanced Datasets
1
作者 Xuewen Mu Bingcong Zhao 《Computers, Materials & Continua》 2025年第5期2143-2159,共17页
When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes... When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets.The proposed method first uses a biased second-order cone programming support vectormachine(B-SOCP-SVM)to identify the support vectors(SVs)and non-support vectors(NSVs)in the imbalanced data.Then,it applies the synthetic minority over-sampling technique(SV-SMOTE)to oversample the support vectors of the minority class and uses the random under-sampling technique(NSV-RUS)multiple times to undersample the non-support vectors of the majority class.Combining the above-obtained minority class data set withmultiple majority class datasets can obtainmultiple new balanced data sets.Finally,SOCP-SVM is used to classify each data set,and the final result is obtained through the integrated algorithm.Experimental results demonstrate that the proposed method performs excellently on imbalanced datasets. 展开更多
关键词 DCS-SOCP-SVM imbalanced datasets sampling method ensemble method integrated algorithm
在线阅读 下载PDF
Augmented line sampling and combination algorithm for imprecise time-variant reliability analysis
2
作者 Xiukai YUAN Weiming ZHENG +1 位作者 Yunfei SHU Yiwei DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期258-274,共17页
Assessment of imprecise time-variant reliability in engineering is a critical task when accounting for both the variability of structural properties and loads over time and the presence of uncertainties involved in th... Assessment of imprecise time-variant reliability in engineering is a critical task when accounting for both the variability of structural properties and loads over time and the presence of uncertainties involved in the ambiguity of parameters simultaneously.To estimate the Imprecise Time-variant Failure Probability Function(ITFPF)and derive the imprecise reliability results as a byproduct,Adaptive Combination Augmented Line Sampling(ACALS)is proposed.It consists of three integrated features:Augmented Line Sampling(ALS),adaptive strategy,and the optimal combination.ALS is adopted as an efficient analysis tool to obtain the failure probability function w.r.t.imprecise parameters.Then,the adaptive strategy iteratively applies ALS while considering both imprecise parameters and time simultaneously.Finally,the optimal combination algorithm collects all result components in an optimal manner to minimize the Coefficient of Variance(C.o.V.)of the ITFPF estimate.Overall,the proposed ACALS method outperforms the original ALS method by efficiently estimating the ITFPF while guaranteeing a minimal C.o.V.Thus,the proposed approach can serve as an effective tool for imprecise time-variant reliability analysis in real engineering applications.Several examples are presented to demonstrate the superiority of the proposed approach in addressing the challenges of estimating the ITFPF. 展开更多
关键词 Time-variant reliability Imprecise reliability Line sampling Adaptive strategy Combination algorithm
原文传递
基于LHS-SSA-BPNN的地下厂房支护优化方法
3
作者 陈雨婷 夏天倚 +3 位作者 徐云乾 包腾飞 程健悦 赵向宇 《水电能源科学》 北大核心 2025年第6期162-166,共5页
为解决传统地下厂房支护结构优化方法未考虑洞室交错的结构复杂性,以及统计回归模型难以定量地揭示支护参数与评价指标稳定性间复杂的映射关系、耗时长的问题,提出了一种基于拉丁超立方抽样方法(LHS),结合麻雀搜索算法(SSA)改进的反向... 为解决传统地下厂房支护结构优化方法未考虑洞室交错的结构复杂性,以及统计回归模型难以定量地揭示支护参数与评价指标稳定性间复杂的映射关系、耗时长的问题,提出了一种基于拉丁超立方抽样方法(LHS),结合麻雀搜索算法(SSA)改进的反向传播神经网络(BPNN)的地下厂房支护结构优化方法。该方法首先采用LHS构建样本方案,然后通过Python批量生成用于ABAQUS仿真分析的计算文件,接着将计算结果标准化成综合评价指标值作为学习样本,从锚杆长度和间距两个因素出发考虑支护参数对稳定性的影响,进一步利用SSA-BPNN构建支护参数与评价指标之间的非线性映射,最后用训练完成的SSA-BPNN模型在一定约束条件下的全局空间内搜索最优支护参数。实例分析表明,基于LHS-SSA-BPNN的支护结构优化方法能够准确搜索出最优支护参数,SSA-BPNN预测值与仿真分析结果的拟合度达96.16%,与BPNN相比性能明显提高,验证了该方法在复杂地质条件下地下厂房支护结构优化的优越性和合理性。 展开更多
关键词 地下厂房支护优化 拉丁超立方抽样 麻雀搜索算法 反向传播神经网络
原文传递
Application of a relief-optimized method for target space exteriorization sampling in landslide susceptibility assessment
4
作者 CUI Yulong DENG Qining MIAO Haibo 《Journal of Mountain Science》 2025年第9期3391-3407,共17页
Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological ... Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological conditions.Traditional sampling strategies commonly used in landslide susceptibility models can lead to a misrepresentation of the distribution of negative samples,causing a deviation from actual geological conditions.This,in turn,negatively affects the discriminative ability and generalization performance of the models.To address this issue,we propose a novel approach for selecting negative samples to enhance the quality of machine learning models.We choose the Liangshan Yi Autonomous Prefecture,located in southwestern Sichuan,China,as the case study.This area,characterized by complex terrain,frequent tectonic activities,and steep slope erosion,experiences recurrent landslides,making it an ideal setting for validating our proposed method.We calculate the contribution values of environmental factors using the relief algorithm to construct the feature space,apply the Target Space Exteriorization Sampling(TSES)method to select negative samples,calculate landslide probability values by Random Forest(RF)modeling,and then create regional landslide susceptibility maps.We evaluate the performance of the RF model optimized by the Environmental Factor Selection-based TSES(EFSTSES)method using standard performance metrics.The results indicated that the model achieved an accuracy(ACC)of 0.962,precision(PRE)of 0.961,and an area under the curve(AUC)of 0.962.These findings demonstrate that the EFSTSES-based model effectively mitigates the negative sample imbalance issue,enhances the differentiation between landslide and non-landslide samples,and reduces misclassification,particularly in geologically complex areas.These improvements offer valuable insights for disaster prevention,land use planning,and risk mitigation strategies. 展开更多
关键词 Non-landslide sample selection Relief algorithm Target Space Exteriorization sampling Landslide Susceptibility Assessment
原文传递
Scaling up the DBSCAN Algorithm for Clustering Large Spatial Databases Based on Sampling Technique 被引量:9
5
作者 Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China 2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 3.College of Remote Sensin 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期467-473,共7页
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni... Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases. 展开更多
关键词 spatial databases data mining CLUSTERING sampling DBSCAN algorithm
在线阅读 下载PDF
Iterative Learning Fault Diagnosis Algorithm for Non-uniform Sampling Hybrid System 被引量:2
6
作者 Hongfeng Tao Dapeng Chen Huizhong Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期534-542,共9页
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys... For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm. 展开更多
关键词 Equivalent fault model fault diagnosis iterative learning algorithm non-uniform sampling hybrid system virtual fault
在线阅读 下载PDF
Optimization of Process Parameters for Cracking Prevention of UHSS in Hot Stamping Based on Hammersley Sequence Sampling and Back Propagation Neural Network-Genetic Algorithm Mixed Methods 被引量:1
7
作者 menghan wang zongmin yue lie meng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第2期31-39,共9页
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B... In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible. 展开更多
关键词 HOT STAMPING CRACKING Hammersley SEQUENCE sampling BACK-PROPAGATION GENETIC algorithm
在线阅读 下载PDF
基于LHS-Kriging-DW的页岩气集输管道内腐蚀预测模型研究 被引量:1
8
作者 周逸轩 彭星煜 耿月华 《热加工工艺》 北大核心 2024年第16期113-117,共5页
为了准确预测页岩气集输管道的内腐蚀速率,对DW(DeWarrd)模型进行修正,运用LHS(拉丁超立方抽样)优化的Kriging(克里金方法)对修正DW进行训练以建立模型并验证。通过高清漏磁检测器检测某页岩气集输管道内腐蚀速率,基于PIPESIM模拟该管... 为了准确预测页岩气集输管道的内腐蚀速率,对DW(DeWarrd)模型进行修正,运用LHS(拉丁超立方抽样)优化的Kriging(克里金方法)对修正DW进行训练以建立模型并验证。通过高清漏磁检测器检测某页岩气集输管道内腐蚀速率,基于PIPESIM模拟该管道现场工况,运用多元非线性回归修正DW模型。运用LHS-Kriging对修正DW模型进行训练并优化,运用建立的模型对另一相邻管道进行了腐蚀速率的预测和现场开挖验证。现场内检测的结果显示:管线在几处低洼积液处发生了严重的腐蚀,因此引入了持液率作为修正因子修正DW模型。选择样本数为500用于LHS-Kriging-DW模型时误差较小。在实例运用中,10个开挖检测点有9个都在预测结果的95%置信区间内,这说明建立的腐蚀速率模型可用于指导现场内腐蚀直接评价等相关工作。 展开更多
关键词 页岩气集输管道 内腐蚀速率 多元非线性回归 克里金方法(Kriging) 拉丁超立方抽样(lhs)
原文传递
Probabilistic Calculation of Tidal Currents forWind Powered Systems Using PSO Improved LHS 被引量:2
9
作者 Hongsheng Su Shilin Song Xingsheng Wang 《Energy Engineering》 EI 2024年第11期3289-3303,共15页
This paper introduces the Particle SwarmOptimization(PSO)algorithmto enhance the LatinHypercube Sampling(LHS)process.The key objective is to mitigate the issues of lengthy computation times and low computational accur... This paper introduces the Particle SwarmOptimization(PSO)algorithmto enhance the LatinHypercube Sampling(LHS)process.The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation(MCS)to LHS for probabilistic trend calculations.The PSOmethod optimizes sample distribution,enhances global search capabilities,and significantly boosts computational efficiency.To validate its effectiveness,the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power.The performance was then compared with Latin Hypercubic Important Sampling(LHIS),which integrates significant sampling with theMonte Carlomethod.The comparison results indicate that the PSO-enhanced method significantly improves the uniformity and representativeness of the sampling.This enhancement leads to a reduction in data errors and an improvement in both computational accuracy and convergence speed. 展开更多
关键词 Latin hypercube sampling Monte Carlo simulation probabilistic currents particle swarm algorithm significant sampling
在线阅读 下载PDF
Potential-Decomposition Strategy in Markov Chain Monte Carlo Sampling Algorithms
10
作者 上官丹骅 包景东 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第11期854-856,共3页
We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in... We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude. 展开更多
关键词 potential-decomposition strategy Markov chain Monte Carlo sampling algorithms
在线阅读 下载PDF
基于LHS和正余弦搜索的阿基米德优化算法 被引量:1
11
作者 詹楷杰 蔡茂国 +1 位作者 洪广杰 欧基发 《计算机与现代化》 2024年第6期38-42,58,共6页
针对阿基米德优化算法(AOA)寻优过程中存在兼顾全局探索和局部开发能力弱、寻优精度低、易陷入局部最优等问题,提出一种基于LHS和正余弦搜索算子的阿基米德优化算法(LSAOA)。首先,采用拉丁超立方抽样方法初始化种群,提高种群的均衡度和... 针对阿基米德优化算法(AOA)寻优过程中存在兼顾全局探索和局部开发能力弱、寻优精度低、易陷入局部最优等问题,提出一种基于LHS和正余弦搜索算子的阿基米德优化算法(LSAOA)。首先,采用拉丁超立方抽样方法初始化种群,提高种群的均衡度和多样性;其次,改变全局搜索与局部搜索的切换模式,提高算法的收敛速度和精度;最后,引入正余弦搜索算子改进局部搜索方式,提高算法的局部搜索开发能力。仿真实验将LSAOA算法与其他改进AOA算法,以及其他元启发式算法在国际通用基准测试函数下进行寻优比较,实验结果表明,LSAOA算法在求解精度和收敛速度等方面具备较好的综合性能。 展开更多
关键词 阿基米德优化算法 拉丁超立方抽样 正余弦搜索算子
在线阅读 下载PDF
Algorithm-based arterial blood sampling recognition increasing safety in point-of-care diagnostics
12
作者 Jorg Peter Wilfried Klingert +5 位作者 Kathrin Klingert Karolin Thiel Daniel Wulff Alfred Konigsrainer Wolfgang Rosenstiel Martin Schenk 《World Journal of Critical Care Medicine》 2017年第3期172-178,共7页
AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fe... AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fed as a real-time data stream to an experimental medical framework. This framework was connected to an analytical application which observes changes in systolic, diastolic and mean pressure to determine anomalies in the continuous data stream. Detection was based on an increased mean blood pressure caused by the closing of the withdrawal three-way tap and an absence of systolic and diastolic measurements during this manipulation. For evaluation of the proposed algorithm, measured data from animal studies in healthy pigs were used.RESULTS Using this novel approach for processing real-time measurement data of arterial pressure monitoring, the exact time of blood withdrawal could be successfully detected retrospectively and in real-time. The algorithm was able to detect 422 of 434(97%) blood withdrawals for blood gas analysis in the retrospective analysis of 7 study trials. Additionally, 64 sampling events for other procedures like laboratory and activated clotting time analyses were detected. The proposed algorithm achieved a sensitivity of 0.97, a precision of 0.96 and an F1 score of 0.97.CONCLUSION Arterial blood pressure monitoring data can be used toperform an accurate identification of individual blood samplings in order to reduce sample mix-ups and thereby increase patient safety. 展开更多
关键词 Blood withdrawal detection Sample dating algorithm Arterial blood gas analysis Patient monitoring Point-of-care diagnostics
暂未订购
基于同源录波数据比对的继电保护采样回路异常检测方法 被引量:3
13
作者 戴志辉 张富泽 韩笑 《电力系统保护与控制》 北大核心 2025年第1期147-159,共13页
处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检... 处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。 展开更多
关键词 继电保护装置 采样回路 异常检测 改进DTW算法 录波数据
在线阅读 下载PDF
改进Informed RRT^(*)算法移动机器人路径规划 被引量:2
14
作者 鲁宇明 周羽逵 +2 位作者 郭鑫 池吕庭 戴骏 《计算机工程与应用》 北大核心 2025年第8期283-293,共11页
Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法... Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法规划的过程中引入人工势场中引力场和斥力场的思想,使机器人与障碍物保持安全距离,并向目标位置行进。对Informed RRT^(*)算法和基于目标偏置的Informed RRT^(*)算法(Goal-bias-Informed RRT^(*))以及改进后的Informed RRT^(*)算法进行比较实验,实验结果验证了改进后Informed RRT^(*)算法的有效性和优越性及稳定性。该算法较Informed RRT^(*)算法和Goal-bias-Informed RRT^(*)效率更高、更容易得到初始解、更安全、更平滑、更稳定。 展开更多
关键词 移动机器人 路径规划 随机采样 Informed RRT^(*)算法 目标偏置 约束采样空间
在线阅读 下载PDF
动态环境下改进BIT^(*)算法的机器人路径规划 被引量:1
15
作者 王晓军 崔锡杰 李晓航 《计算机工程与应用》 北大核心 2025年第7期361-369,共9页
针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点... 针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点位置,弥补搜索路径成功率低的缺点;加入惩罚项改进启发式函数,弥补路径规划效率低的缺点;再引入路径拉伸优化减少路径长度以及冗余节点,缩小采样范围。面对未知障碍物,利用反向生长搜索树先验信息提出临时目标点选取策略,并结合改进随机点、转向角以及新节点的快速扩展随机树(RRT)算法,避免重规划路径过分偏离以及不能及时躲避。与其他算法进行对比,结果表明:动态环境批量通知树算法规划路径成功率和效率更高,路径长度和拐点数更少,躲避未知障碍物性能更高,重规划路径更接近全局路径。 展开更多
关键词 批量通知树算法 反向生长搜索树 批量采样点策略 启发式函数 快速扩展随机树(RRT)算法 路径重规划
在线阅读 下载PDF
基于优选模型和灰狼算法的注塑工艺参数优化 被引量:1
16
作者 林峰 孙永华 +2 位作者 李国琳 李西兵 连灿鑫 《塑料》 北大核心 2025年第1期100-107,共8页
采用Moldflow软件对食品保鲜盒盖的注塑成型过程进行模拟分析,目的是通过优化注塑工艺参数,最大限度地减小产品的体积收缩率,从而提高产品质量。采用筛选试验设计的方法,确定对注塑成型过程影响较显著的参数。然后,构建多个近似模型,并... 采用Moldflow软件对食品保鲜盒盖的注塑成型过程进行模拟分析,目的是通过优化注塑工艺参数,最大限度地减小产品的体积收缩率,从而提高产品质量。采用筛选试验设计的方法,确定对注塑成型过程影响较显著的参数。然后,构建多个近似模型,并对这些模型进行细致的比较分析,筛选出性能最佳的模型。最后,利用灰狼优化算法对最优模型进行参数优化,得到最优注塑工艺参数组合,并进行模拟验证和实际验证。结果表明,采用优化后的注塑工艺参数组合制备的产品的体积收缩率显著减小,由初始的5.837%下降至4.01%,下降了31.3%,证明了结合计算机模拟、更优的模型和智能优化算法在注塑工艺优化中具有有效性及较好的应用潜力。 展开更多
关键词 注塑工艺参数 筛选试验设计 中心复合试验 最优拉丁超立方抽样 灰狼优化算法
原文传递
基于改进近端策略优化算法的柔性作业车间调度 被引量:2
17
作者 王艳红 付威通 +2 位作者 张俊 谭园园 田中大 《控制与决策》 北大核心 2025年第6期1883-1891,共9页
柔性作业车间调度是经典且复杂的组合优化问题,对于离散制造系统的生产优化具有重要的理论和实际意义.基于多指针图网络框架和近端策略优化算法设计一种求解柔性作业车间调度问题的深度强化学习算法.首先,将“工序-机器”分配调度过程... 柔性作业车间调度是经典且复杂的组合优化问题,对于离散制造系统的生产优化具有重要的理论和实际意义.基于多指针图网络框架和近端策略优化算法设计一种求解柔性作业车间调度问题的深度强化学习算法.首先,将“工序-机器”分配调度过程表征成由选择工序和分配机器两类动作构成的马尔可夫决策过程;其次,通过解耦策略解除动作之间的耦合关系,并设计新的损失函数和贪婪采样策略以提高算法的验证推理能力;在此基础上扩充状态空间,使评估网络能够更全面地感知与评估,从而进一步提升算法的学习和决策能力.在随机生成算例及基准算例上进行仿真和对比分析,验证算法的良好性能及泛化能力. 展开更多
关键词 柔性作业车间调度 近端策略优化算法 双动作耦合网络 损失函数优化 贪婪采样 深度强化学习
原文传递
基于等距随机抽样方法的TSMH河流水污染溯源算法
18
作者 鲍煦 朱容松 林锋 《江苏大学学报(自然科学版)》 北大核心 2025年第3期323-329,共7页
针对经典MCMC(Markov chain Monte Carlo)算法求解河流水污染源信息(排放量、排放时间和排放位置)时初始点的选取和接受率不高导致的计算效率低下问题,通过COMSOL仿真软件构建污染物二维扩散模型,利用不同算法对比分析了上述两方面对水... 针对经典MCMC(Markov chain Monte Carlo)算法求解河流水污染源信息(排放量、排放时间和排放位置)时初始点的选取和接受率不高导致的计算效率低下问题,通过COMSOL仿真软件构建污染物二维扩散模型,利用不同算法对比分析了上述两方面对水污染溯源结果的影响,并由此提出了基于等距随机抽样方法(equidistant random sampling)的两阶段多链Metropolis Hastings算法(ERS-TSMH).仿真结果表明,传统的MH算法和TSMH算法在求解时易陷入局部最优值或不收敛的情况,前者接受率在20%左右,后者却达到近50%;多链ERS-MH算法提高了反演的准确性,但经过10 000次左右迭代后收敛,效率低下;多链ERS-TSMH算法在保证溯源精度的同时,在5 000次左右迭代后收敛,效率显著提高且表现出高稳定性和可靠性. 展开更多
关键词 水污染溯源 MCMC COMSOL 等距随机抽样 MH算法 ERS-TSMH算法
在线阅读 下载PDF
基于超像素与颜色背包算法的点画生成方法
19
作者 李军 同乐 +1 位作者 钮焱 王子壬 《计算机应用与软件》 北大核心 2025年第8期219-226,共8页
点画是图像风格化的重要分支之一,主要通过点的密度改变来表现出图像中色彩亮度的变化,是目前图像风格迁移领域的研究热点。常见的深度学习方法未能用于点画的主要原因在于点画维度低,损失函数难以构造。提出一种基于超像素和颜色背包... 点画是图像风格化的重要分支之一,主要通过点的密度改变来表现出图像中色彩亮度的变化,是目前图像风格迁移领域的研究热点。常见的深度学习方法未能用于点画的主要原因在于点画维度低,损失函数难以构造。提出一种基于超像素和颜色背包算法选点的点画生成算法,该算法采用超像素预处理图像,采用基于K-means二分子聚类的颜色均值生成采样半径,泊松圆盘依据采样半径来生成点画的初始采样点,使用基于颜色背包算法的随机选点算法来提高局部SSIM值。实验证明,该算法在视觉效果和SSIM、PSNR评分等方面均优于现有方法,并且具有良好的实时性。 展开更多
关键词 点画 超像素 颜色背包算法 泊松圆盘采样
在线阅读 下载PDF
基于遗传算法的FIR数字滤波器的优化设计 被引量:1
20
作者 徐开军 《信息化研究》 2025年第1期37-42,共6页
传统的FIR数字滤波器设计方法,往往依赖于设计者的经验和对特定函数的选择,在面对复杂的滤波指标要求时,难以实现全局最优的设计结果。遗传算法作为一种模拟自然进化过程的随机搜索算法,具有强大的全局优化能力,能够在复杂的解空间中有... 传统的FIR数字滤波器设计方法,往往依赖于设计者的经验和对特定函数的选择,在面对复杂的滤波指标要求时,难以实现全局最优的设计结果。遗传算法作为一种模拟自然进化过程的随机搜索算法,具有强大的全局优化能力,能够在复杂的解空间中有效地搜索到接近最优的解,将遗传算法应用于FIR数字滤波器的设计中,为解决传统设计方法的局限性提供了新的途径。本文深入研究了基于遗传算法的FIR数字滤波器优化设计方法,阐述了其设计流程,并通过实例验证了该方法相较于传统设计方法的优势。 展开更多
关键词 数字滤波器 频率采样法 遗传算法 语音处理
在线阅读 下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部