期刊文献+
共找到3,175篇文章
< 1 2 159 >
每页显示 20 50 100
DCS-SOCP-SVM:A Novel Integrated Sampling and Classification Algorithm for Imbalanced Datasets
1
作者 Xuewen Mu Bingcong Zhao 《Computers, Materials & Continua》 2025年第5期2143-2159,共17页
When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes... When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets.The proposed method first uses a biased second-order cone programming support vectormachine(B-SOCP-SVM)to identify the support vectors(SVs)and non-support vectors(NSVs)in the imbalanced data.Then,it applies the synthetic minority over-sampling technique(SV-SMOTE)to oversample the support vectors of the minority class and uses the random under-sampling technique(NSV-RUS)multiple times to undersample the non-support vectors of the majority class.Combining the above-obtained minority class data set withmultiple majority class datasets can obtainmultiple new balanced data sets.Finally,SOCP-SVM is used to classify each data set,and the final result is obtained through the integrated algorithm.Experimental results demonstrate that the proposed method performs excellently on imbalanced datasets. 展开更多
关键词 DCS-SOCP-SVM imbalanced datasets sampling method ensemble method integrated algorithm
在线阅读 下载PDF
Scaling up the DBSCAN Algorithm for Clustering Large Spatial Databases Based on Sampling Technique 被引量:9
2
作者 Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China 2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 3.College of Remote Sensin 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期467-473,共7页
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni... Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases. 展开更多
关键词 spatial databases data mining CLUSTERING sampling DBSCAN algorithm
在线阅读 下载PDF
Iterative Learning Fault Diagnosis Algorithm for Non-uniform Sampling Hybrid System 被引量:2
3
作者 Hongfeng Tao Dapeng Chen Huizhong Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期534-542,共9页
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys... For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm. 展开更多
关键词 Equivalent fault model fault diagnosis iterative learning algorithm non-uniform sampling hybrid system virtual fault
在线阅读 下载PDF
Optimization of Process Parameters for Cracking Prevention of UHSS in Hot Stamping Based on Hammersley Sequence Sampling and Back Propagation Neural Network-Genetic Algorithm Mixed Methods 被引量:1
4
作者 menghan wang zongmin yue lie meng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第2期31-39,共9页
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B... In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible. 展开更多
关键词 HOT STAMPING CRACKING Hammersley SEQUENCE sampling BACK-PROPAGATION GENETIC algorithm
在线阅读 下载PDF
联合FOD-sCARS的土壤有机质高光谱机器学习估测模型 被引量:3
5
作者 吴梦红 窦森 +5 位作者 林楠 姜然哲 陈思 李佳璇 付佳伟 梅显军 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期204-212,共9页
土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建... 土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建立SOM估测模型是现在较为合理有效的方法。为探索解决目前高光谱遥感影像建立SOM含量估测模型存在光谱数据冗余、光谱数据特征提取精度低、小样本模型泛化能力不强的问题,选择位于青海省湟中县的研究区,共采集67个土壤样本。获取资源1号02D(ZY1-02D)高光谱遥感影像并进行预处理得到样点像元光谱数据,采用分数阶微分变换(FOD)方法挖掘与SOM含量具有响应关系的敏感波段,以0.2为一个步长,利用相关性阈值法对比分析不同阶次微分处理数据挖掘能力;运用稳定性竞争性自适应重加权采样算法(sCARS)去除高光谱冗余数据获取建模特征波段,选择随机森林(RF)、极端梯度提升树、极限学习机和岭回归机器学习作为建模算法,以全波段和特征波段光谱数据分别作为模型输入变量构建SOM估测模型进行高光谱反演研究工作;最后根据最优特征变量和建模算法,基于ZY1-02D遥感影像进行了SOM空间分布制图。结果表明:采用FOD变换相比整数阶可以大大提高波段与SOM含量间的相关性,挖掘出更多细微的与SOM含量产生响应关系的光谱波段,其中0.8阶微分变换效果最优,较原始波段相比相关系数最大值提高了0.546;相较于全波段光谱数据,采用sCARS特征提取方法获取特征波段构建模型的估测精度得到较大提升,说明sCARS可以有效提升建模数据的质量,提升模型预测精度。建模算法中RF表现最优,R_(p)^(2)(模型决定系数)达到0.766,RPD达到1.86,较全波段建模结果R_(p)^(2)提升约7.58%;基于FOD-sCARS和RF实现了区域SOM含量估测制图。研究进一步验证利用星载高光谱遥感影像是实现区域SOM估测制图的可靠途径,研究结果可为估测区域SOM含量提供新思路,为利用星载高光谱遥感影像绘制SOM含量空间分布图提供了数据支持。 展开更多
关键词 高光谱遥感影像 分数阶微分变换 稳定性竞争性自适应重加权采样算法 土壤有机质 随机森林
在线阅读 下载PDF
Augmented line sampling and combination algorithm for imprecise time-variant reliability analysis
6
作者 Xiukai YUAN Weiming ZHENG +1 位作者 Yunfei SHU Yiwei DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期258-274,共17页
Assessment of imprecise time-variant reliability in engineering is a critical task when accounting for both the variability of structural properties and loads over time and the presence of uncertainties involved in th... Assessment of imprecise time-variant reliability in engineering is a critical task when accounting for both the variability of structural properties and loads over time and the presence of uncertainties involved in the ambiguity of parameters simultaneously.To estimate the Imprecise Time-variant Failure Probability Function(ITFPF)and derive the imprecise reliability results as a byproduct,Adaptive Combination Augmented Line Sampling(ACALS)is proposed.It consists of three integrated features:Augmented Line Sampling(ALS),adaptive strategy,and the optimal combination.ALS is adopted as an efficient analysis tool to obtain the failure probability function w.r.t.imprecise parameters.Then,the adaptive strategy iteratively applies ALS while considering both imprecise parameters and time simultaneously.Finally,the optimal combination algorithm collects all result components in an optimal manner to minimize the Coefficient of Variance(C.o.V.)of the ITFPF estimate.Overall,the proposed ACALS method outperforms the original ALS method by efficiently estimating the ITFPF while guaranteeing a minimal C.o.V.Thus,the proposed approach can serve as an effective tool for imprecise time-variant reliability analysis in real engineering applications.Several examples are presented to demonstrate the superiority of the proposed approach in addressing the challenges of estimating the ITFPF. 展开更多
关键词 Time-variant reliability Imprecise reliability Line sampling Adaptive strategy Combination algorithm
原文传递
Potential-Decomposition Strategy in Markov Chain Monte Carlo Sampling Algorithms
7
作者 上官丹骅 包景东 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第11期854-856,共3页
We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in... We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude. 展开更多
关键词 potential-decomposition strategy Markov chain Monte Carlo sampling algorithms
在线阅读 下载PDF
Algorithm-based arterial blood sampling recognition increasing safety in point-of-care diagnostics
8
作者 Jorg Peter Wilfried Klingert +5 位作者 Kathrin Klingert Karolin Thiel Daniel Wulff Alfred Konigsrainer Wolfgang Rosenstiel Martin Schenk 《World Journal of Critical Care Medicine》 2017年第3期172-178,共7页
AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fe... AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fed as a real-time data stream to an experimental medical framework. This framework was connected to an analytical application which observes changes in systolic, diastolic and mean pressure to determine anomalies in the continuous data stream. Detection was based on an increased mean blood pressure caused by the closing of the withdrawal three-way tap and an absence of systolic and diastolic measurements during this manipulation. For evaluation of the proposed algorithm, measured data from animal studies in healthy pigs were used.RESULTS Using this novel approach for processing real-time measurement data of arterial pressure monitoring, the exact time of blood withdrawal could be successfully detected retrospectively and in real-time. The algorithm was able to detect 422 of 434(97%) blood withdrawals for blood gas analysis in the retrospective analysis of 7 study trials. Additionally, 64 sampling events for other procedures like laboratory and activated clotting time analyses were detected. The proposed algorithm achieved a sensitivity of 0.97, a precision of 0.96 and an F1 score of 0.97.CONCLUSION Arterial blood pressure monitoring data can be used toperform an accurate identification of individual blood samplings in order to reduce sample mix-ups and thereby increase patient safety. 展开更多
关键词 Blood withdrawal detection Sample dating algorithm Arterial blood gas analysis Patient monitoring Point-of-care diagnostics
暂未订购
基于CA/SPA-CARS算法的小麦条锈病特征波段优选与监测模型构建
9
作者 谷玲霄 方涛 +4 位作者 杜林丹 吴喜芳 李长春 连增增 岳哲 《农业机械学报》 北大核心 2025年第6期487-498,共12页
作物病害会严重制约作物产量和品质,传统的病害监测方法效率低且易受主观因素影响。高光谱遥感技术以其高光谱分辨率和客观真实性在作物病害监测中展现出重要潜力。本文利用多生育期冬小麦地面高光谱及田间病情指数(Disease index,DI),... 作物病害会严重制约作物产量和品质,传统的病害监测方法效率低且易受主观因素影响。高光谱遥感技术以其高光谱分辨率和客观真实性在作物病害监测中展现出重要潜力。本文利用多生育期冬小麦地面高光谱及田间病情指数(Disease index,DI),基于相关性分析(Correlation analysis,CA)和连续投影法(Successive projections algorithm,SPA)分别对光谱数据进行光谱特征降维,通过构建最优参数的竞争性自适应重加权采样(Competitive adaptive reweighted sampling,CARS)算法优选小麦条锈病敏感波段,最后利用偏最小二乘回归(Partial least squares regression,PLSR)、反向传播神经网络(Back propagation neural network,BPNN)和极限学习机(Extreme learning machine,ELM)算法建立基于特征光谱的病情指数模型,比较不同建模方法的建模效果,实现小麦条锈病监测。研究结果表明,不同生育期均显示小麦条锈病敏感特征波段多集中于近红外和短波红外波段,其中挑旗期为842、850、858 nm,灌浆期为947、953、1275、1277、1590、1663、1665 nm;对比不同建模算法,PLSR模型表现最佳,满足小麦早期病虫害监测需求,且在病害中期显示更明显特征;挑旗期和灌浆期分别以SPA-CARS-MCX和CA-CARS-MSC数据构建PLSR模型预测效果最优,验证集R2分别为0.782和0.861,RMSE分别为0.022和0.094,RPD分别为2.140和2.687。本文构建算法能够为不同生育期小麦条锈病监测提供参考。 展开更多
关键词 小麦条锈病 光谱变换 特征波段选择 相关性分析 连续投影法 竞争性自适应重加权采样
在线阅读 下载PDF
CARS算法提取特征光谱建立荞麦叶片总黄酮与蛋白质近红外模型
10
作者 朱丽伟 杜千禧 +4 位作者 唐国红 李洪有 张晓娜 陈庆富 石桃雄 《光谱学与光谱分析》 北大核心 2025年第9期2585-2589,共5页
为满足荞麦品质鉴定和育种工作的需要,采用竞争性自适应重加权采样算法(CARS)提取特征光谱,结合定量偏最小二乘法对荞麦叶片总黄酮和蛋白质含量进行了快速测定研究。首先利用Kennard-Stone(KS)算法划分训练集和测试集,训练集总黄酮含量... 为满足荞麦品质鉴定和育种工作的需要,采用竞争性自适应重加权采样算法(CARS)提取特征光谱,结合定量偏最小二乘法对荞麦叶片总黄酮和蛋白质含量进行了快速测定研究。首先利用Kennard-Stone(KS)算法划分训练集和测试集,训练集总黄酮含量的平均值、最大值和最小值含量分别是55.8、92.5和28.1 mg·g^(-1),测试集样品的平均值、最大值和最小值含量分别是71.0、99.8和31.5 mg·g^(-1)。训练集蛋白质含量的平均值、最大值和最小值含量分别是169.6、331.0和121.2 mg·g^(-1),测试集样品蛋白质含量的平均值、最大值和最小值含量分别是158.2、183.0和129.1 mg·g^(-1)。然后分别使用归一化、归一化+多元散射校正、归一化+标准正太变换、归一化+一阶导数、归一化+二阶导数、归一化+SG平滑滤波对波长在4000~12000 cm-1范围内光谱进行预处理,再采用CARS算法提取特征波段,最后利用偏最小二乘法建立预测模型。通过对模型训练集决定系数(Rc)、测试集决定系数(Rp)、交叉验证均方根误差(RMSECV)、测试集均方根误差(RMSEP)和剩余预测偏差(RPD)的综合分析,得到可预测荞麦总黄酮和蛋白质的最佳模型。其中3个总黄酮预测模型是可用的,最佳的预测模型使用了1102个波段中的46个特征波段,所使用的预处理方法为归一化+一阶导数,其模型的R_(c)、R_(p)、RMSECV、RMSEP和RPD分别为0.997、0.933、0.170、0.829和2.893。4个蛋白质预测模型是可用的,其最佳的预测模型使用了42个特征波长,所使用的预处理方法为归一化+二阶导数,其模型的R_(c)、R_(p)、RMSECV、RMSEP、RPD分别为0.998、0.965、0.202、0.353和3.849。结果表明,将KS算法和CARS算法应用到近红外光谱模型的建立过程,可以利用较少的样本建立可靠的预测模型,满足对荞麦叶片总黄酮和蛋白质的快速测定,为叶用荞麦育种工作提供有力的工具。 展开更多
关键词 近红外光谱 荞麦 KS算法 cars算法 总黄酮 蛋白质
在线阅读 下载PDF
Application of a relief-optimized method for target space exteriorization sampling in landslide susceptibility assessment
11
作者 CUI Yulong DENG Qining MIAO Haibo 《Journal of Mountain Science》 2025年第9期3391-3407,共17页
Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological ... Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological conditions.Traditional sampling strategies commonly used in landslide susceptibility models can lead to a misrepresentation of the distribution of negative samples,causing a deviation from actual geological conditions.This,in turn,negatively affects the discriminative ability and generalization performance of the models.To address this issue,we propose a novel approach for selecting negative samples to enhance the quality of machine learning models.We choose the Liangshan Yi Autonomous Prefecture,located in southwestern Sichuan,China,as the case study.This area,characterized by complex terrain,frequent tectonic activities,and steep slope erosion,experiences recurrent landslides,making it an ideal setting for validating our proposed method.We calculate the contribution values of environmental factors using the relief algorithm to construct the feature space,apply the Target Space Exteriorization Sampling(TSES)method to select negative samples,calculate landslide probability values by Random Forest(RF)modeling,and then create regional landslide susceptibility maps.We evaluate the performance of the RF model optimized by the Environmental Factor Selection-based TSES(EFSTSES)method using standard performance metrics.The results indicated that the model achieved an accuracy(ACC)of 0.962,precision(PRE)of 0.961,and an area under the curve(AUC)of 0.962.These findings demonstrate that the EFSTSES-based model effectively mitigates the negative sample imbalance issue,enhances the differentiation between landslide and non-landslide samples,and reduces misclassification,particularly in geologically complex areas.These improvements offer valuable insights for disaster prevention,land use planning,and risk mitigation strategies. 展开更多
关键词 Non-landslide sample selection Relief algorithm Target Space Exteriorization sampling Landslide Susceptibility Assessment
原文传递
高光谱技术结合CARS算法预测土壤水分含量 被引量:42
12
作者 于雷 朱亚星 +3 位作者 洪永胜 夏天 刘目兴 周勇 《农业工程学报》 EI CAS CSCD 北大核心 2016年第22期138-145,共8页
高光谱技术已成为预测土壤含水量(soil moisture content,SMC)的重要方法,但因土壤高光谱中包含了大量冗余信息和无效信息,不仅导致SMC的高光谱估算模型复杂度高,而且影响了模型的预测精度。因此,该研究在室内设计SMC梯度试验,测定土... 高光谱技术已成为预测土壤含水量(soil moisture content,SMC)的重要方法,但因土壤高光谱中包含了大量冗余信息和无效信息,不仅导致SMC的高光谱估算模型复杂度高,而且影响了模型的预测精度。因此,该研究在室内设计SMC梯度试验,测定土壤高光谱反射率,经Savitzky-Golay平滑(Savitzky-Golay smoothing,SG)和连续统去除(continuum removal,CR)预处理后,基于竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)方法分别优选出土壤在全部SMC的水分敏感波长变量,确定适用于土壤在全部SMC的共性波长变量,以其为优选变量集,采用偏最小二乘(partial least squares regression,PLSR)回归方法建立模型并进行验证。结果表明,SG和CR预处理后的光谱曲线在450、1 400、1 900、2 200 nm附近吸收峰的形状特征凸显;基于CARS方法对土壤在不同SMC的光谱曲线进行变量优选后,得出优选变量集为443~449、1 408~1 456、1 916~1 943、2 209~2 225 nm;CARS-PLSR模型性能优于全波段PLSR模型,模型预测R2、均方根误差、相对分析误差分别为0.983、0.0144、8.36,不仅提升了预测精度和预测能力,而且降低了变量维度和模型复杂度。该文通过优选土壤水分的敏感波段,有效提高了SMC预测模型的鲁棒性,为快速准确评估农田墒情提供了新途径,为开发田间SMC测定传感器提供了理论依据。 展开更多
关键词 土壤水分 算法 模型 高光谱 竞争适应重加权采样算法 变量优选 潮土
在线阅读 下载PDF
基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型 被引量:38
13
作者 孙俊 丛孙丽 +3 位作者 毛罕平 武小红 张晓东 汪沛 《农业工程学报》 EI CAS CSCD 北大核心 2017年第5期178-184,共7页
为了实现油麦菜生长期间更合理的灌水管理,研究一种基于高光谱技术的精确、快速、有效检测油麦菜叶片水分的新方法。以5种不同水分胁迫水平的油麦菜为研究对象,通过高光谱成像系统获取高光谱图像并利用干燥法测量叶片含水率。采用多项... 为了实现油麦菜生长期间更合理的灌水管理,研究一种基于高光谱技术的精确、快速、有效检测油麦菜叶片水分的新方法。以5种不同水分胁迫水平的油麦菜为研究对象,通过高光谱成像系统获取高光谱图像并利用干燥法测量叶片含水率。采用多项式平滑(Savitzky-Golay,SG)结合标准变量变换(standard normalized variable,SNV)对高光谱数据去噪平滑。利用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)进行特征波长选择,并与逐步回归分析(stepwise regression,SR)及连续投影算法(successive projections algorithm,SPA)进行比较,利用支持向量回归机(support vector regression,SVR)分别建立油麦菜叶片全光谱数据、3种特征光谱数据与干基含水率的关系模型。结果表明,基于竞争性自适应加权算法波长选择的支持向量回归模型(CARS-SVR)效果最佳,但预测精度尚不够理想,故引入人工蜂群算法(artificial bee colony,ABC)优化模型的参数惩罚因子和核参数。最终,经人工蜂群算法优化后的模型(CARS-ABC-SVR)的预测集决定系数R2和均方根误差RMSE分别为0.9214和2.95%。因此,利用高光谱技术结合CARS-ABC-SVR模型预测油麦菜叶片水分含量是可行的。 展开更多
关键词 水分 算法 模型 高光谱 油麦菜 竞争性自适应加权算法 人工蜂群算法
在线阅读 下载PDF
同步荧光光谱结合CARS变量优选预测猪肉中四环素残留含量 被引量:8
14
作者 肖海斌 赵进辉 +2 位作者 袁海超 洪茜 刘木华 《光学精密工程》 EI CAS CSCD 北大核心 2013年第10期2513-2519,共7页
为快速检测猪肉中的四环素残留含量,采用同步荧光法结合竞争适应重加权采样(CARS)变量优选法建立了预测猪肉中四环素残留含量的支持向量回归(SVR)模型。从样本的三维同步荧光光谱中确定了最佳波长差为65nm,采用CARS方法从中挑选出与四... 为快速检测猪肉中的四环素残留含量,采用同步荧光法结合竞争适应重加权采样(CARS)变量优选法建立了预测猪肉中四环素残留含量的支持向量回归(SVR)模型。从样本的三维同步荧光光谱中确定了最佳波长差为65nm,采用CARS方法从中挑选出与四环素相关的特征波长变量,并与连续投影算法(SPA)及遗传算法(GA)进行比较。最后,应用SVR算法对优选出的16个波长变量建立猪肉中四环素含量的预测模型。分析发现,多元散射校正(MSC)光谱预处理后的CARS方法优于SPA及GA变量选择方法,可以有效地筛选出全光谱中的特征波长变量。CARS-SVR建立的四环素预测模型优于原始光谱的SVR模型,其预测集的决定系数(R2)和预测均方根误差(RMSEP)分别为0.961 2和10.94mg/kg。研究结果表明,采用同步荧光法结合CARS-SVR模型可以预测猪肉中的四环素残留含量,且CARS-SVR能有效地简化模型并提高预测精度。 展开更多
关键词 同步荧光光谱 竞争适应重加权采样(cars) 支持向量回归 四环素 猪肉
在线阅读 下载PDF
CARS结合PLS-LDA法识别奶牛饲料中土霉素的可行性研究 被引量:7
15
作者 刘星 单杨 李高阳 《包装与食品机械》 CAS 2012年第4期1-4,共4页
收集了一年内不同月份不同种类的纯奶牛精补料20个,制备土霉素含量不同的掺假奶牛精补料100个,在全光谱范围内对样品进行近红外透反射光谱扫描,利用CARS法对光谱数据进行前处理,采用偏最小二乘-线性判别分析(PLS-LDA)法来建立判别模型... 收集了一年内不同月份不同种类的纯奶牛精补料20个,制备土霉素含量不同的掺假奶牛精补料100个,在全光谱范围内对样品进行近红外透反射光谱扫描,利用CARS法对光谱数据进行前处理,采用偏最小二乘-线性判别分析(PLS-LDA)法来建立判别模型。建立的PLS-LDA模型的交互验证最小错误率为0.0729,模型错分率为0,模型预测错误率为0.0417。说明利用近红外光谱技术建立定性判别模型来检测奶牛饲料中是否掺有土霉素是可行的。 展开更多
关键词 奶牛饲料 土霉素 竞争性自适应重加权采样法 偏最小二乘-线性判别分析法
在线阅读 下载PDF
基于改进RRT算法的机械臂路径规划
16
作者 李伟达 姜宏 +3 位作者 章翔峰 马奔驰 陈林 张鹏飞 《现代电子技术》 北大核心 2026年第1期157-162,共6页
针对快速扩展随机树(RRT)算法在机械臂路径规划中存在盲目搜索、计算时间长和冗余过程点比较多的问题,文中提出一种改进RRT算法。首先建立了固定采样函数,使得随机树的扩展更具有方向性;其次在自适应步长基础上加入动态目标偏置策略,通... 针对快速扩展随机树(RRT)算法在机械臂路径规划中存在盲目搜索、计算时间长和冗余过程点比较多的问题,文中提出一种改进RRT算法。首先建立了固定采样函数,使得随机树的扩展更具有方向性;其次在自适应步长基础上加入动态目标偏置策略,通过避免对局部区域过度搜索来提高收敛速度;最后利用固定采样点构造两棵随机树进行搜索,解决了算法扩张速度慢、收敛速度慢和盲目性的问题。简单环境下仿真结果表明:改进RRT算法相对于其他三种算法收敛时间分别减少了18.3%、30%、63.5%,路径长度分别缩短了14.1%、3.5%、41.6%;复杂环境下仿真结果表明:改进RRT算法相对于其他三种算法收敛时间分别减少了56.4%、43.3%、67.6%,路径长度分别缩短了16.1%、9.7%、34.2%。证明了改进后的算法在解决收敛速度慢和导向问题上的有效性,同时算法对复杂环境的适应性也更强。 展开更多
关键词 机械臂 路径规划 RRT算法 固定采样点 自适应步长 动态目标偏置
在线阅读 下载PDF
基于SPXY-WT-CARS算法的草莓糖度近红外光谱检测研究 被引量:6
17
作者 张娟 《食品与发酵科技》 CAS 2020年第6期136-139,142,共5页
基于样品集划分、特征波长选择、偏最小二乘法(PLS)等基本理论,利用近红外光谱技术对草莓糖度建立定量分析模型。首先,采用光谱-理化值共生距离算法(SPXY)将草莓样品集划分为40个校正集和15个预测集。其次,采用小波变换(WT)结合竞争性... 基于样品集划分、特征波长选择、偏最小二乘法(PLS)等基本理论,利用近红外光谱技术对草莓糖度建立定量分析模型。首先,采用光谱-理化值共生距离算法(SPXY)将草莓样品集划分为40个校正集和15个预测集。其次,采用小波变换(WT)结合竞争性自适应重加权算法(CARS)对原始光谱进行分解和重构。最后,利用偏最小二乘法(PLS)建立草莓糖度预测模型。结果表明,SPXY样品集划分合理有效,有利于建立稳健的预测模型。小波变换能够有效剔除高频噪声干扰,重构得到的光谱特征波形轮廓清晰。PLS预测模型不仅能够提高模型预测精度和稳定度,而且还能降低建模变量和模型复杂度。该研究结果为实际生产中利用近红外光谱技术快速无损检测其它水果糖度提供了技术可行性。 展开更多
关键词 草莓糖度 近红外光谱 SPXY算法 WT算法 cars算法 PLS算法 特征波长
在线阅读 下载PDF
Application of QPSO-KM Algorithm in Wine Quality Classification
18
作者 邱靖 彭莞云 +1 位作者 吴瑞武 张海涛 《Agricultural Science & Technology》 CAS 2015年第9期2045-2047,共3页
Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers.... Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers. The results showed that the evaluation data of the second group were more reliable compared with those of the first group. At the same time, the KM algorithm was optimized using the QPSO algorithm. The wine classification model was established. Compared with the other two algorithms, the QPSO-KM algorithm was more capable of searching the globally optimum solution, and it could be used to classify the wine samples. In addition,the QPSO-KM algorithm could also be used to solve the issues about clustering. 展开更多
关键词 QPSO KM algorithm Wine sample Classification model
在线阅读 下载PDF
小样本不平衡数据集异常双层窗口检测方法研究
19
作者 方叶彤 张伦传 《现代电子技术》 北大核心 2026年第1期137-140,共4页
当数据库的正例样本与负例样本之间存在数量级差别时,不平衡数据中存在的类重叠问题会使数据的决策边界重叠。使用单一窗口更关注数据的相似性结构而不是时间尺度的分层,导致在检测不同时间尺度的数据时几何平均值(G-mean)数值较小。为... 当数据库的正例样本与负例样本之间存在数量级差别时,不平衡数据中存在的类重叠问题会使数据的决策边界重叠。使用单一窗口更关注数据的相似性结构而不是时间尺度的分层,导致在检测不同时间尺度的数据时几何平均值(G-mean)数值较小。为此,文中提出一种小样本不平衡数据集异常双层窗口检测方法。采用改进合成少数类样本过采样技术,新建不重复少数类样本,实现小样本不平衡数据集均衡化处理;考虑数据的时间尺度,采用双层窗口将均衡化后的时序数据划分为多个子时间序列,计算斜率置信区间距离半径特征,识别异常子序列,结合K-means聚类算法从异常子序列中识别出异常数据。实验结果显示:该方法可有效实现不平衡数据集均衡化处理,精准完成不同不平衡率小样本数据集的异常数据检测,G-mean数值高于0.7,为异常数据检测提供了一种有效的解决方案。 展开更多
关键词 小样本 不平衡数据集 异常检测 双层窗口 过采样 时间序列 聚类算法 均衡化
在线阅读 下载PDF
泵浦光中有效频段对CARS信号选择激发作用的实验分析
20
作者 李霞 余仲秋 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期73-75,共3页
运用基于遗传算法的自适应飞秒脉冲整形技术,实现了苯(C6H6,992 cm-1)和氘代苯(C6D6,945 cm-1)混合溶液中相干反斯托克斯(CARS)信号峰高分辨率的选择激发.谐波频率分辨光学开关(SHG-FROG)痕迹显示出飞秒CARS的选择激发主要是通过对泵浦... 运用基于遗传算法的自适应飞秒脉冲整形技术,实现了苯(C6H6,992 cm-1)和氘代苯(C6D6,945 cm-1)混合溶液中相干反斯托克斯(CARS)信号峰高分辨率的选择激发.谐波频率分辨光学开关(SHG-FROG)痕迹显示出飞秒CARS的选择激发主要是通过对泵浦光中与某待测振动模式相对应的有效频段的裁剪来实现的.通过在傅立叶平面对泵浦光进行频谱裁剪进一步在实验上验证了这一结论.该项研究成果对于进一步提高遗传算法搜索效率提供了重要思路.对于复杂分子系统飞秒CARS的选择激发研究具有深远意义. 展开更多
关键词 自适应飞秒脉冲整形 相干反斯托克斯拉曼散射(cars) 遗传算法(GA) 选择激发
在线阅读 下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部