期刊文献+
共找到57,317篇文章
< 1 2 250 >
每页显示 20 50 100
Sampled-data Observer Design for a Class of Stochastic Nonlinear Systems Based on the Approximate Discrete-time Models 被引量:2
1
作者 Xinxin Fu Yu Kang Pengfei Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期507-511,共5页
In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher prec... In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher precision numerical methods,and it preserves important structures of the nonlinear systems.Also,the form of Euler-Maruyama model is simple and easy to be calculated.The results provide a reference for sampled-data observer design method for such stochastic nonlinear systems,and may be useful to many practical control applications,such as tracking control in mechanical systems.And the effectiveness of the approach is demonstrated by a simulation example. 展开更多
关键词 Approximation model exponentially bounded sampled-data observer stochastic nonlinear
在线阅读 下载PDF
Sampled-data extended state observer for uncertain nonlinear systems 被引量:1
2
作者 Chuan TIAN Peng YAN Zhen ZHANG 《Control Theory and Technology》 EI CSCD 2016年第3期189-198,共10页
In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sam... In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer. 展开更多
关键词 sampled-data extended state observer nonlinear systems
原文传递
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
3
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Observer-Dependence in P vs NP
4
作者 Logan Nye 《Journal of Modern Physics》 2025年第1期6-51,共46页
We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexit... We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as Gödel’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth. 展开更多
关键词 COMPLEXITY Computation observer Theory GRAVITATION Information CRITICALITY
在线阅读 下载PDF
Sensor Fault Diagnosis Observer Design for Linear Sampled-Data Descriptor System with Time-Vary Delay
5
作者 Mao Wang Tiantian Liang Zhenhua Zhou 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第6期8-18,共11页
In this paper, a robust sensor fault diagnosis observer with non-singular structure is proposed for a class of linear sampled-data descriptor system with state time-vary delay. Firstly, a sampled-data descriptor model... In this paper, a robust sensor fault diagnosis observer with non-singular structure is proposed for a class of linear sampled-data descriptor system with state time-vary delay. Firstly, a sampled-data descriptor model with time-vary delay is proposed and transformed into a discrete-time non-singular one. Then, a robust sensor fault diagnosis observer is proposed based on the state estimation error and the measurement residual, this observer can guarantee the robustness of the residual against the augmented disturbance and the sensor fault, which means the H∞ performance index is satisfied. As the confining matrix of the designed observer parameters does not meet the Linear Matrix Inequality (LMI), a cone complementary linearization (CCL) algorithm is proposed to solve this problem. The decision logic of the residual is obtained by the residual evaluation function. Simulation results show the effectiveness of the method. 展开更多
关键词 descriptor system sampled-data system time-vary delay sensor fault diagnosis observer design
在线阅读 下载PDF
Distributed Observer for Full-Measured Nonlinear Systems Based on Knowledge of FMCF
6
作者 Haotian Xu Shuai Liu +1 位作者 Yueyang Li Ke Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期69-85,共17页
Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitation... Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems. 展开更多
关键词 Distributed observer full-actuated system full-measured system(FMS) nonlinear observer sensor networks
在线阅读 下载PDF
Idle speed control of proton exchange membrane fuel cell system via extended Kalman filter observer
7
作者 ZHAO Hong-hui DING Tian-wei +4 位作者 WANG Yi-lin HUANG Xing DU Jing HAO Zhi-qiang MIN Hai-tao 《控制理论与应用》 北大核心 2025年第8期1615-1624,共10页
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is... When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics. 展开更多
关键词 proton exchange membrane fuel cell idle speed control zero power output output power nonlinear model extended Kalman filter observer
在线阅读 下载PDF
Non-Singular Fast Terminal Sliding Mode Control of PMSM Based on Disturbance Observer
8
作者 Lang Qin Zhengrui Jiang +4 位作者 Xueshu Xing Xiao Wang Yaohua Yin Yuhui Zhou Zhiqin He 《Computers, Materials & Continua》 2025年第6期5279-5298,共20页
In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce... In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC. 展开更多
关键词 PMSM SMC zebra optimization algorithm disturbance observer
在线阅读 下载PDF
Active disturbance rejection control with cascade generalized proportional integral observer:application to the current control of grid-connected converters
9
作者 Harvey David Rojas Nelson Leonardo Díaz +1 位作者 Herbert Enrique Rojas John Cortés-Romero 《Control Theory and Technology》 2025年第3期543-562,共20页
This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial... This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial and resonant disturbances.In this estimator structure,referred to as Cascade GPIO(CGPIO),the total disturbance sensitivity is the product of the sensitivities at each cascade level.This approach improves system performance against both periodic and non-periodic disturbances and enhances robustness under frequency variations in harmonic components.Additionally,the decoupled nature of the estimator reduces the order of the GPIOs,thereby simplifying tuning and limiting observer gains.The proposed control scheme is supported by a frequency-domain analysis and is experimentally validated in the current control of a grid-connected converter subject to control gain uncertainties,harmonic distortion,frequency deviations,and measurement noise.Experimental results demonstrate that the CGPIO-based ADRC outperforms benchmark solutions,including proportional-integral(PI)and proportional-resonant(PR)controllers. 展开更多
关键词 Active disturbance rejection control(ADRC) Cascade observer Generalized proportional integral observer(GPIO) Periodic and non-periodic disturbances Grid-connected converter(GcC)
原文传递
Observer-Driven LQR and FOLQR Control for Enhanced Stability of Underactuated 2-DOF Helicopter.
10
作者 Ghulam E Mustafa Abro Ayman M Abdallah 《Instrumentation》 2025年第1期60-69,共10页
This study offers an empirical comparison of the Linear Quadratic Regulator(LQR)and Fractional Order LQR(FOLQR)controllers that were implemented on a two-degrees-offreedom(2-DOF)Quanser Aero 2 helicopter platform.It e... This study offers an empirical comparison of the Linear Quadratic Regulator(LQR)and Fractional Order LQR(FOLQR)controllers that were implemented on a two-degrees-offreedom(2-DOF)Quanser Aero 2 helicopter platform.It employs both full and reduced-order observer designs to facilitate trajectory monitoring and stabilisation.The Aero 2 platform is dynamically modelled using Euler-Lagrange equations to develop a multi-input multi-output(MIMO)system.This system comprises two inputs and four state equations.In collaboration with observers,the LQR and FOLQR controllers approximate states that are not directly measurable by utilising the system model and available data.This procedure effectively overcomes the practical limitations of sensors.The enhanced performance of FOLQR in terms of tracking precision and stability has been depicted from the experimental results,showing real-time execution on the Aero 2 platform.This paper provides rigorous insights into control engineering and advanced observer-based control design for underactuated systems. 展开更多
关键词 LQR EULER-LAGRANGE trajectory tracking MIMO system and observer design
原文传递
Trajectory Tracking Control of Parking Automated Guided Vehicles Using Nonlinear Disturbance Observer-based Sliding Mode
11
作者 Xudong Hu Bo Zhu +1 位作者 Dongkui Tan Nong Zhang 《Chinese Journal of Mechanical Engineering》 2025年第5期362-378,共17页
Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and a... Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and attain any orientation simultaneously due to their mecanum wheels makes it convenient to transport vehicles in a parking lot.In this study,a nonlinear disturbance observer-based sliding mode controller for the trajectory tracking problem of a P-AGV is proposed.The kinematic and dynamic models for a P-AGV tracking trajectory are first analyzed in sequence and the influences of disturbing forces considered.Subsequently,a nonlinear disturbance observer(NDO)is designed to estimate the disturbing forces and torques generated by the caster wheels.Based on the designed NDO,a robust nonsingular terminal sliding-mode(NTSM)controller is used to track reference trajectories.The stabilities of the NDO and NDO-NTSM control systems are theoretically verified using their Lyapunov functions.Finally,simulations and experiments are performed to verify the effectiveness of the proposed control scheme.The experimental results show that the proposed NDO-NTSM controller can improve the trajectory tracking stability by 42-68%compared to a traditional NTSM controller.The NDO-based sliding mode controller for trajectory tracking proposed in this study can effectively reduce the impact of disturbances on trajectory tracking accuracy. 展开更多
关键词 Parking AGV Trajectory tracking Nonlinear disturbance observer Sliding mode
在线阅读 下载PDF
Nonlinear effect analysis and compensation based on improved friction observer for torque rotating stage
12
作者 Yingjie Jia Bo Liu +1 位作者 Hui Tang Yuzhang Wei 《Nanotechnology and Precision Engineering》 2025年第3期138-148,共11页
In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stag... In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems. 展开更多
关键词 Rotating stage Mechanical analysis Frictional nonlinear effect Disturbance observation
在线阅读 下载PDF
Observer-based prescribed-time time-varying output formation-containment control of heterogeneous multi-agent systems
13
作者 Haiyang Hu Tao Li +3 位作者 Xiaowen Zhao Yuanmei Wang Jialong Tian Zijie Jiang 《Chinese Physics B》 2025年第10期366-375,共10页
This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state d... This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state dimensions.The system comprises one tracking leader,multiple formation leaders,and followers,where two types of leaders are used to generate a reference trajectory for movement and achieve specific formation,respectively.Firstly,a prescribed-time dynamics observer is constructed for the formation leaders to estimate the tracking leader's dynamic model and state.On this basis,a prescribed-time control protocol is designed for the formation leaders to achieve time-varying output formation.Then,a prescribed-time convex hull observer is designed for the followers to estimate information regarding the convex hull formed by the formation leaders.Using the estimated convex hull information,a prescribed-time containment control protocol is designed to ensure the followers converge into the convex hull.Furthermore,using Lyapunov stability theory,the stability of systems is proved in detail,which implies that the heterogeneous multi-agent systems can achieve PT-TV-OFC control.Finally,numerical simulations validate the feasibility of the theoretical results. 展开更多
关键词 heterogeneous multi-agent systems prescribed-time control observers time-varying output formation-containment control
原文传递
Design and implementation of disturbance sliding mode observer for enhancing the dynamic control precision of inertial stabilization platform
14
作者 ZHANG Zhidong YANG Gongliu +2 位作者 CAI Qingzhong FAN Jing LI Tao 《Journal of Systems Engineering and Electronics》 2025年第3期791-802,共12页
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T... In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering. 展开更多
关键词 inertial stabilization platform disturbance suppression sliding mode observer robust control
在线阅读 下载PDF
Three-dimensional finite-time optimal cooperative guidance with integrated information fusion observer
15
作者 Yiao Zhan Linwei Wang Di Zhou 《Defence Technology(防务技术)》 2025年第4期12-28,共17页
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte... Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios. 展开更多
关键词 Anti-saturation predefined-time observer Nonlinear finite-time optimal control Three-dimensional guidance Information fusion
在线阅读 下载PDF
Flatness Control with Cascaded Filtered High-Gain and Disturbance Observers for Rehabilitation Exoskeletons
16
作者 Sahbi Boubaker Salim Hadj Said +1 位作者 Souad Kamel Habib Dimassi 《Computers, Materials & Continua》 2025年第12期5703-5721,共19页
Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear,time-varying dynamics of human-robot interaction,limited sensor availability,and unknown external disturbances.This study proposes... Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear,time-varying dynamics of human-robot interaction,limited sensor availability,and unknown external disturbances.This study proposes a novel control strategy that combines flatness-based control with two cascaded observers:a high-gain observer to estimate unmeasured joint velocities,and a nonlinear disturbance observer to reconstruct external torque disturbances in real time.These estimates are integrated into the control law to enable robust,state-feedback-based trajectory tracking.The approach is validated through simulation scenarios involving partial state measurements and abrupt external torque perturbations,reflecting realistic rehabilitation conditions.Results confirm that the proposed method significantly enhances tracking accuracy and disturbance rejection capability,demonstrating its strong potential for reliable and adaptive rehabilitation assistance. 展开更多
关键词 Exoskeleton control rehabilitation robot trajectory tracking state and disturbance estimation cascade observer
在线阅读 下载PDF
Predefined-Time Guaranteed Performance Attitude Tracking Control of Flexible Spacecraft Based on Multi-observers
17
作者 DENG Xingting ZHANG Ziyang +3 位作者 WANG Beichao WANG Guohua LI Fangfang LI Shuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期26-37,共12页
To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance c... To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance. 展开更多
关键词 flexible spacecraft guaranteed performance predefined⁃time control multi⁃observers
在线阅读 下载PDF
Non-singular fast terminal sliding mode control for roll-pitch seeker based on extended state observers
18
作者 XIAO Bowen XIA Qunli 《Journal of Systems Engineering and Electronics》 2025年第2期537-551,共15页
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr... For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions. 展开更多
关键词 air-to-air missile roll-pitch seeker finite-time con-vergence combined sliding mode control extended state observer
在线阅读 下载PDF
Reinforcement learning based optimized backstepping control for hypersonic vehicles with disturbance observer
19
作者 Haoyu CHENG Xin LIU +2 位作者 Xiaoxi LIANG Xiaoyan ZHANG Shaoyi LI 《Chinese Journal of Aeronautics》 2025年第11期413-437,共25页
This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address com... This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address complex control challenges.The Minimal Learning Parameter(MLP)technique is applied to manage unknown nonlinear dynamics,significantly reducing the computational load usually associated with Neural Network(NN)weight updates.To improve the control system robustness,an MLP-based nonlinear disturbance observer is designed,which estimates lumped disturbances,including flexibility effects,model uncertainties,and external disruptions within the FAHVs.In parallel,the control strategy integrates reinforcement learning using an MLP-based actor-critic framework within the backstepping design to achieve both optimality and robustness.The actor performs control actions,while the critic assesses the optimal performance index function.To minimize this index function,an adaptive gradient descent method constructs both the actor and critic.Lyapunov analysis is employed to demonstrate that all signals in the closed-loop system are semiglobally uniformly ultimately bounded.Simulation results confirm that the proposed control strategy delivers high control performance,marked by improved accuracy and reduced energy consumption. 展开更多
关键词 Hypersonic vehicles Minimal learning parameter Nonlinear disturbance observer Optimized backstepping control Reinforcement learning
原文传递
On the stability condition of active disturbance rejection control with time-varying bandwidth observer
20
作者 Depeng Song Sen Chen +1 位作者 Wenchao Xue Zhiliang Zhao 《Control Theory and Technology》 2025年第3期464-478,共15页
With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to... With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability. 展开更多
关键词 Active disturbance rejection control Time-varying bandwidth Extended state observer Closed-loop stability Rate of change
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部