We have investigated the role of the ambient gas nature and pressure in the structure and appearance of the laser treated zone. and the influence of the total duration and temporal shape of laser pulse with the laser ...We have investigated the role of the ambient gas nature and pressure in the structure and appearance of the laser treated zone. and the influence of the total duration and temporal shape of laser pulse with the laser tight being λ= 10.6μm wavelength incident upon a metallic surface at intermediate taser intensities of 107-108 W / cm2. A plasma is accompanied by the action of the laser pulse, It acts as an active moderator among laser beam and target thus determining the final status of the contact surface展开更多
This paper focuses on work related to post irradiation examination of 300-series austenitic stainless steel taken from reactor vessel internals of PWR. High neutron irradiation dose in NNP's leads to a degradation of...This paper focuses on work related to post irradiation examination of 300-series austenitic stainless steel taken from reactor vessel internals of PWR. High neutron irradiation dose in NNP's leads to a degradation of microstructure of the material in a nano-metric scale. Hence, it is important to characterize the irradiated materials to understand the physical basis of the degradation mechanisms. Microstructural characterization of neutron-irradiated materials by TEM requires enhanced sample preparation methodologies, which commonly needs general improvements regarding particular experiment to be performed. In this study, the authors have developed methodology specialized in 1 mm TEM thin foil preparation from a deformed shank of a broken miniaturized tensile specimen. TEM foil size in current studies is smaller than standard because of the small shank diameter and high radioactivity of the studied material. The reduction of the TEM foil radioactivity to minimum is crucial to perform EDX chemical analysis and to increase the EDX detector lifetime. This paper describes whole process from bulk sample handling, including remote-controlled material cutting in shielded hot-cells and disc polishing in glow-boxes, up to the final procedure of electrolytic-polishing of electron transparent 1 mm TEM foils. Eventually, results of TEM microanalysis of radiation-induced defects were present.展开更多
文摘We have investigated the role of the ambient gas nature and pressure in the structure and appearance of the laser treated zone. and the influence of the total duration and temporal shape of laser pulse with the laser tight being λ= 10.6μm wavelength incident upon a metallic surface at intermediate taser intensities of 107-108 W / cm2. A plasma is accompanied by the action of the laser pulse, It acts as an active moderator among laser beam and target thus determining the final status of the contact surface
文摘This paper focuses on work related to post irradiation examination of 300-series austenitic stainless steel taken from reactor vessel internals of PWR. High neutron irradiation dose in NNP's leads to a degradation of microstructure of the material in a nano-metric scale. Hence, it is important to characterize the irradiated materials to understand the physical basis of the degradation mechanisms. Microstructural characterization of neutron-irradiated materials by TEM requires enhanced sample preparation methodologies, which commonly needs general improvements regarding particular experiment to be performed. In this study, the authors have developed methodology specialized in 1 mm TEM thin foil preparation from a deformed shank of a broken miniaturized tensile specimen. TEM foil size in current studies is smaller than standard because of the small shank diameter and high radioactivity of the studied material. The reduction of the TEM foil radioactivity to minimum is crucial to perform EDX chemical analysis and to increase the EDX detector lifetime. This paper describes whole process from bulk sample handling, including remote-controlled material cutting in shielded hot-cells and disc polishing in glow-boxes, up to the final procedure of electrolytic-polishing of electron transparent 1 mm TEM foils. Eventually, results of TEM microanalysis of radiation-induced defects were present.