Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use ...Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use of algae hydrogels.In this study,Ba^(2+)/Ca^(2+)co-crosslinked alginate(Ba/CaAlg)hydrogel membrane was prepared by cross-linking sodium alginate with a blend aqueous solution of barium ions and calcium ions,and the membrane was applied to the separation of dyes/salts from dyeing wastewater.Compared with the CaAlg membrane,the Ba/CaAlg hydrogel membrane exhibited more stable structure,and the mechanical properties and salt tolerance of the membrane were significantly improved.The flux of Ba/CaAlg membrane for methyl blue/sodium chloride mixed solution reached 43.5 L m^(−2) h^(−1),which was significantly higher than that of CaAlg membrane.Besides,the Ba/CaAlg membrane showed higher dye rejection(>99.6%)and lower salt rejection(<8.2%).The structure of Ba/CaAlg membrane was preliminarily simulated by molecular dynamics,and the pore size and distribution of the membrane were calculated.The Ba/CaAlg membrane has a broad application prospect in dyes/salts separation.展开更多
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit...Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.展开更多
The feasibility of simultaneous water recovery,salt separation and effective descaling of hypersaline brine was investigated by diisopropylamine(DIPA)-based directional solvent extraction(DSE),using diluted/concentrat...The feasibility of simultaneous water recovery,salt separation and effective descaling of hypersaline brine was investigated by diisopropylamine(DIPA)-based directional solvent extraction(DSE),using diluted/concentrated seawater with initial saline concentration range of 12–237 g/L at extraction temperatures of 5 and 15℃,respectively.The water recovery shows an obvious boundary at saline concentration of 115 g/L under dual effect of specific water extraction efficiency and extraction cycles.High Cl^(–) ion concentration in product water is in sharp contrast to the nearly complete removal of SO_(4)^(2–)and hardness ions,indicating that DIPA-based DSE process indeed achieved efficient separation and purification of Cl^(–) ion from hypersaline brines.Especially,the radical precipitation of Mg^(2+)and Ca^(2+)ions in form of Mg(OH)_(2)and CaCO_(3)demonstrates effective descaling potential,although it leads to more DIPA residues in dewatered raffinate than product water.Moreover,an exponential correlation between the Cl^(–) removal efficiency and specific water extraction efficiency further reveals the intrinsic relationship of water extraction process and transfer of Cl^(–) ion to the product water.Overall,the study provides a novel approach for integrating the water recovery and separation of Cl^(–) ion from ultra-high-salinity brines with radical precipitation of Mg^(2+)and Ca^(2+) ions in one step.展开更多
1 Introduction Salt Lake,as a kind of chemical resources,has been attracted to many researchers,especially the resources of lithium.As reported,many kinds of brines exist in the world depending on the compositions of ...1 Introduction Salt Lake,as a kind of chemical resources,has been attracted to many researchers,especially the resources of lithium.As reported,many kinds of brines exist in the world depending on the compositions of the brine.Based on the chemical composition the brines can be classified as the types of chloride,carbonate,sulfate.For different展开更多
Biomass-based membranes have attracted increasing attentions due to their cheap and sustainable advantages.In this work,a novel thin-fiilm composite(TFC)nanofiltration(NF)membrane was fabricated through a facial inter...Biomass-based membranes have attracted increasing attentions due to their cheap and sustainable advantages.In this work,a novel thin-fiilm composite(TFC)nanofiltration(NF)membrane was fabricated through a facial interfacial polymerization(IP)process by initiate the crosslinking reaction between collagen fibers(CFs)and tannic acid(TA).The increased TA concentrations endowed the TFC membrane with a higher crosslinking degree,a thicker active layer and a rougher top surface.At optimized condition with 0.60 mg TA decoration,the TFC-3 membrane exhibited a high water permeability of 23.49 L m^(-2)h^(-1)bar^(-1)with high rejections above 98.0%for congo red,reactive blue 19,coomassie blue G-250,and methyl blue.Furthermore,the membrane preserved remarkable salt retentions(93.3%for Na_(2)SO_(4),83.4%for MgSO_(4),36.2%for MgCl_(2),and 26.4%for NaCl)and satisfying operation stability.This facial fabrication method offered a new insight to employ biomass for molecular precise separation.展开更多
Herein,polyethersulfone(PES)and sulfonated polysulfone(SPSf)blend membranes were prepared with addition of sulfonated polyethersulfone(SPES)as a hydrophilic polymer and adipic acid as a porogen via non-solvent induced...Herein,polyethersulfone(PES)and sulfonated polysulfone(SPSf)blend membranes were prepared with addition of sulfonated polyethersulfone(SPES)as a hydrophilic polymer and adipic acid as a porogen via non-solvent induced phase separation method for effective fractionation of dyes based on the influence of steric hindrance and charge effect.Raman spectroscopy and molecular dynamic simulation modeling confirmed that hydrogen bonds between PES,SPSf,SPES,and adipic acid were crucial to membrane formation and spatial arrangement.Further addition of hydrophilic SPES resulted in a membrane with reduced pore size and molecular weight cut-off as well as amplified negative charge and pure water permeance.During separation,the blend membranes exhibited higher rejection rates for nine types of small molecular weight(269.3–800 Da)dyes than for neutral polyethylene glycol molecules(200–1000 Da).This was attributed to the size effect and the synergistic effect between steric hindrance and charge repulsion.Notably,the synergistic impact decreased with dye molecular weight,while greater membrane negative charge enhanced small molecular dye rejection.Ideal operational stability and anti-fouling performance were best observed in M2(PES/SPSf/SPES,3.1 wt%).Summarily,this study demonstrates that SPES with–SO3‒functional groups can be applied to control the microstructure and separation of membranes.展开更多
基金supported by the National Natural Science Foundation of China(No.22078244)Scientific research and development project of SINOPEC(No.222443)the Science and Technology Plans of Tianjin(No.20JCYBJC00120).
文摘Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use of algae hydrogels.In this study,Ba^(2+)/Ca^(2+)co-crosslinked alginate(Ba/CaAlg)hydrogel membrane was prepared by cross-linking sodium alginate with a blend aqueous solution of barium ions and calcium ions,and the membrane was applied to the separation of dyes/salts from dyeing wastewater.Compared with the CaAlg membrane,the Ba/CaAlg hydrogel membrane exhibited more stable structure,and the mechanical properties and salt tolerance of the membrane were significantly improved.The flux of Ba/CaAlg membrane for methyl blue/sodium chloride mixed solution reached 43.5 L m^(−2) h^(−1),which was significantly higher than that of CaAlg membrane.Besides,the Ba/CaAlg membrane showed higher dye rejection(>99.6%)and lower salt rejection(<8.2%).The structure of Ba/CaAlg membrane was preliminarily simulated by molecular dynamics,and the pore size and distribution of the membrane were calculated.The Ba/CaAlg membrane has a broad application prospect in dyes/salts separation.
基金supported by the Excellent Youth Foundation of Henan Scientific Committee,China(222300420018)Key Scientific Research Projects in Universities of Henan Province,China(21zx006)。
文摘Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.
基金supported financially by a grant from Shougang Group Co.,Ltd.,China(No.K202200134Y).
文摘The feasibility of simultaneous water recovery,salt separation and effective descaling of hypersaline brine was investigated by diisopropylamine(DIPA)-based directional solvent extraction(DSE),using diluted/concentrated seawater with initial saline concentration range of 12–237 g/L at extraction temperatures of 5 and 15℃,respectively.The water recovery shows an obvious boundary at saline concentration of 115 g/L under dual effect of specific water extraction efficiency and extraction cycles.High Cl^(–) ion concentration in product water is in sharp contrast to the nearly complete removal of SO_(4)^(2–)and hardness ions,indicating that DIPA-based DSE process indeed achieved efficient separation and purification of Cl^(–) ion from hypersaline brines.Especially,the radical precipitation of Mg^(2+)and Ca^(2+)ions in form of Mg(OH)_(2)and CaCO_(3)demonstrates effective descaling potential,although it leads to more DIPA residues in dewatered raffinate than product water.Moreover,an exponential correlation between the Cl^(–) removal efficiency and specific water extraction efficiency further reveals the intrinsic relationship of water extraction process and transfer of Cl^(–) ion to the product water.Overall,the study provides a novel approach for integrating the water recovery and separation of Cl^(–) ion from ultra-high-salinity brines with radical precipitation of Mg^(2+)and Ca^(2+) ions in one step.
文摘1 Introduction Salt Lake,as a kind of chemical resources,has been attracted to many researchers,especially the resources of lithium.As reported,many kinds of brines exist in the world depending on the compositions of the brine.Based on the chemical composition the brines can be classified as the types of chloride,carbonate,sulfate.For different
基金National Natural Science Foundation of China(Grant No:21908076)
文摘Biomass-based membranes have attracted increasing attentions due to their cheap and sustainable advantages.In this work,a novel thin-fiilm composite(TFC)nanofiltration(NF)membrane was fabricated through a facial interfacial polymerization(IP)process by initiate the crosslinking reaction between collagen fibers(CFs)and tannic acid(TA).The increased TA concentrations endowed the TFC membrane with a higher crosslinking degree,a thicker active layer and a rougher top surface.At optimized condition with 0.60 mg TA decoration,the TFC-3 membrane exhibited a high water permeability of 23.49 L m^(-2)h^(-1)bar^(-1)with high rejections above 98.0%for congo red,reactive blue 19,coomassie blue G-250,and methyl blue.Furthermore,the membrane preserved remarkable salt retentions(93.3%for Na_(2)SO_(4),83.4%for MgSO_(4),36.2%for MgCl_(2),and 26.4%for NaCl)and satisfying operation stability.This facial fabrication method offered a new insight to employ biomass for molecular precise separation.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.22278318 and 21878230).
文摘Herein,polyethersulfone(PES)and sulfonated polysulfone(SPSf)blend membranes were prepared with addition of sulfonated polyethersulfone(SPES)as a hydrophilic polymer and adipic acid as a porogen via non-solvent induced phase separation method for effective fractionation of dyes based on the influence of steric hindrance and charge effect.Raman spectroscopy and molecular dynamic simulation modeling confirmed that hydrogen bonds between PES,SPSf,SPES,and adipic acid were crucial to membrane formation and spatial arrangement.Further addition of hydrophilic SPES resulted in a membrane with reduced pore size and molecular weight cut-off as well as amplified negative charge and pure water permeance.During separation,the blend membranes exhibited higher rejection rates for nine types of small molecular weight(269.3–800 Da)dyes than for neutral polyethylene glycol molecules(200–1000 Da).This was attributed to the size effect and the synergistic effect between steric hindrance and charge repulsion.Notably,the synergistic impact decreased with dye molecular weight,while greater membrane negative charge enhanced small molecular dye rejection.Ideal operational stability and anti-fouling performance were best observed in M2(PES/SPSf/SPES,3.1 wt%).Summarily,this study demonstrates that SPES with–SO3‒functional groups can be applied to control the microstructure and separation of membranes.