期刊文献+
共找到11,356篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved Chicken Swarm Optimization Techniques Based on Cultural Algorithm Operators for Biometric Access Control
1
作者 Jonathan Ponmile Oguntoye Sunday Adeola Ajagbe +4 位作者 Oluyinka Titilayo Adedeji Olufemi Olayanju Awodoye Abigail Bola Adetunji Elijah Olusayo Omidiora Matthew Olusegun Adigun 《Computers, Materials & Continua》 2025年第9期5713-5732,共20页
This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CS... This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CSO),especially in dealing with larger dimensions due to diversity loss during solution space exploration.Our experimentation involved 600 sample images encompassing facial,iris,and fingerprint data,collected from 200 students at Ladoke Akintola University of Technology(LAUTECH),Ogbomoso.The results demonstrate the remarkable effectiveness of CCSO,yielding accuracy rates of 90.42%,91.67%,and 91.25%within 54.77,27.35,and 113.92 s for facial,fingerprint,and iris biometrics,respectively.These outcomes significantly outperform those achieved by the conventional CSO technique,which produced accuracy rates of 82.92%,86.25%,and 84.58%at 92.57,63.96,and 163.94 s for the same biometric modalities.The study’s findings reveal that CCSO,through its integration of Cultural Algorithm(CA)Operators into CSO,not only enhances algorithm performance,exhibiting computational efficiency and superior accuracy,but also carries broader implications beyond biometric systems.This innovation offers practical benefits in terms of security enhancement,operational efficiency,and adaptability across diverse user populations,shaping more effective and resource-efficient access control systems with real-world applicability. 展开更多
关键词 Access control biometric technology chicken swarm optimization cultural algorithm pattern recognition
在线阅读 下载PDF
Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics
2
作者 Shaobo Deng Meiru Xie +3 位作者 Bo Wang Shuaikun Zhang Sujie Guan Min Li 《Computers, Materials & Continua》 2025年第2期2723-2751,共29页
In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update ... In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles. Then, particles within each subgroup are divided into three different types based on their evolutionary levels, employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning modes. Consequently, all particles play their respective roles in promoting the global optimization performance of the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection methods based on intelligent optimization algorithms in terms of overall performance in global search capability, classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the excellent performance of the PEPSO. 展开更多
关键词 Machine learning feature selection evolutionary algorithm particle swarm optimization
在线阅读 下载PDF
An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification
3
作者 Essam H.Houssein Eman Saber Nagwan Abdel Samee 《Computer Modeling in Engineering & Sciences》 2025年第8期2445-2480,共36页
Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design... Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED. 展开更多
关键词 Feature selection(FS) machine learning(ML) animated oat optimization algorithm(AOO) dry eye disease(DED) oppositional-based learning(OBL) particle swarm optimization(PSO)
在线阅读 下载PDF
Pilot Allocation Optimization Using Enhanced Salp Swarm Algorithm for Sparse Channel Estimation 被引量:1
4
作者 Ning Li Kun Yao +2 位作者 Zhongliang Deng Xiaohao Zhao Jianchang Qin 《China Communications》 SCIE CSCD 2021年第11期141-154,共14页
Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration me... Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE. 展开更多
关键词 OFDM channel estimation CWssa compressed sensing salp swarm algorithm pilot allocation
在线阅读 下载PDF
Optimization of Cognitive Radio System Using Self-Learning Salp Swarm Algorithm 被引量:1
5
作者 Nitin Mittal Harbinder Singh +5 位作者 Vikas Mittal Shubham Mahajan Amit Kant Pandit Mehedi Masud Mohammed Baz Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2022年第2期3821-3835,共15页
CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit ... CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit is extremely important to adapt or reconfigure the systemparameters.The Decision Engine is a major module in the CR-based system that not only includes radio monitoring and cognition functions but also responsible for parameter adaptation.As meta-heuristic algorithms offer numerous advantages compared to traditional mathematical approaches,the performance of these algorithms is investigated in order to design an efficient CR system that is able to adapt the transmitting parameters to effectively reduce power consumption,bit error rate and adjacent interference of the channel,while maximized secondary user throughput.Self-Learning Salp Swarm Algorithm(SLSSA)is a recent meta-heuristic algorithm that is the enhanced version of SSA inspired by the swarming behavior of salps.In this work,the parametric adaption of CR system is performed by SLSSA and the simulation results show that SLSSA has high accuracy,stability and outperforms other competitive algorithms formaximizing the throughput of secondary users.The results obtained with SLSSA are also shown to be extremely satisfactory and need fewer iterations to converge compared to the competitive methods. 展开更多
关键词 Cognitive radio meta-heuristic algorithm cognitive decision engine salp swarm algorithm
在线阅读 下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
6
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
在线阅读 下载PDF
A Boosted Communicational Salp Swarm Algorithm: Performance Optimization and Comprehensive Analysis
7
作者 Chao Lin Pengjun Wang +2 位作者 Ali Asghar Heidari Xuehua Zhao Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1296-1332,共37页
The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers fro... The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers from low convergence accuracy and slow convergence speed when dealing with some complex problems. Therefore, this paper proposes an improved algorithm based on SSA and adds three improvements. First, the Real-time Update Mechanism (RUM) underwrites the role of ensuring that excellent individual information will not be lost and information exchange will not lag in the iterative process. Second, the Communication Strategy (CMS), on the other hand, uses the multiplicative relationship of multiple individuals to regulate the exploration and exploitation process dynamically. Third, the Selective Replacement Strategy (SRS) is designed to adaptively adjust the variance ratio of individuals to enhance the accuracy and depth of convergence. The new proposal presented in this study is named RCSSSA. The global optimization capability of the algorithm was tested against various high-performance and novel algorithms at IEEE CEC 2014, and its constrained optimization capability was tested at IEEE CEC 2011. The experimental results demonstrate that the proposed algorithm can converge faster while obtaining better optimization results than traditional swarm intelligence and other improved algorithms. The statistical data in the table support its optimization capabilities, and multiple graphs deepen the understanding and analysis of the proposed algorithm. 展开更多
关键词 salp swarm algorithm swarm intelligence Global optimization EXPLORATION EXPLOITATION
在线阅读 下载PDF
Multi-Strategy-Driven Salp Swarm Algorithm for Global Optimization
8
作者 Zhiwei Gao Bo Wang 《Journal of Computer and Communications》 2023年第7期88-117,共30页
In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources o... In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems. 展开更多
关键词 salp swarm algorithm (ssa) Levy Flight Brownian Motion Location Update Simulation Experiment
在线阅读 下载PDF
Dung Beetle Optimization Algorithm Based on Bounded Reflection Optimization and Multi-Strategy Fusion for Multi-UAV Trajectory Planning
9
作者 Weicong Tan Qiwu Wu +2 位作者 Lingzhi Jiang Tao Tong Yunchen Su 《Computers, Materials & Continua》 2025年第11期3621-3652,共32页
This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ... This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts. 展开更多
关键词 Dung beetle optimizer algorithm swarm intelligence MULTI-UAV trajectory planning complex environments
在线阅读 下载PDF
Inversion of Rayleigh wave dispersion curves based on the Osprey Optimization Algorithm
10
作者 Zhi Li Hang-yu Yue +3 位作者 De-xi Ma Yu Fu Jing-yang Ni Jin-jun Pi 《Applied Geophysics》 2025年第3期804-819,896,897,共18页
In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization al... In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization algorithms used in dispersion curve inversion are highly dependent on the initial model and are prone to being trapped in local optima,while classical global optimization algorithms often suffer from slow convergence and low solution accuracy.To address these issues,this study introduces the Osprey Optimization Algorithm(OOA),known for its strong global search and local exploitation capabilities,into the inversion of dispersion curves to enhance inversion performance.In noiseless theoretical models,the OOA demonstrates excellent inversion accuracy and stability,accurately recovering model parameters.Even in noisy models,OOA maintains robust performance,achieving high inversion precision under high-noise conditions.In multimode dispersion curve tests,OOA effectively handles higher modes due to its efficient global and local search capabilities,and the inversion results show high consistency with theoretical values.Field data from the Wyoming region in the United States and a landfill site in Italy further verify the practical applicability of the OOA.Comprehensive test results indicate that the OOA outperforms the Particle Swarm Optimization(PSO)algorithm,providing a highly accurate and reliable inversion strategy for dispersion curve inversion. 展开更多
关键词 surface wave exploration dispersion curve inversion Osprey optimization algorithm Particle swarm optimization geophysical inversion
在线阅读 下载PDF
Blending Scheduling under Uncertainty Based on Particle Swarm Optimization Algorithm 被引量:16
11
作者 ZHAO Xiaoqiang(赵小强) +1 位作者 RONG Gang(荣冈) 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第4期535-541,共7页
Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. ... Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. Particle swarm optimization (PSO) algorithm is developed for nonlinear optimization problems with both contin- uous and discrete variables. In order to obtain a global optimum solution quickly, PSO algorithm is applied to solve the problem of blending scheduling under uncertainty. The calculation results based on an example of gasoline blending agree satisfactory with the ideal values, which illustrates that the PSO algorithm is valid and effective in solving the blending scheduling problem. 展开更多
关键词 blending scheduling UNCERTAINTY gasoline blending particle swarm optimization algorithm nonlinear optimization
在线阅读 下载PDF
An Improved Particle Swarm Optimization Algorithm with Harmony Strategy for the Location of Critical Slip Surface of Slopes 被引量:12
12
作者 李亮 褚雪松 《China Ocean Engineering》 SCIE EI 2011年第2期357-364,共8页
The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy ... The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters. 展开更多
关键词 slope stability analysis limit equilibrium method particle swarm optimization algorithm harmony strategy
在线阅读 下载PDF
Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm 被引量:8
13
作者 Yan Xiang Shu-yan Fu +2 位作者 Kai Zhu Hui Yuan Zhi-yuan Fang 《Water Science and Engineering》 EI CAS CSCD 2017年第1期70-77,共8页
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,... Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly. 展开更多
关键词 Monitoring model Particle swarm optimization algorithm Earth rock dam Lagging effect TYPHOON Seepage pressure Mutation factor Piezometric level
在线阅读 下载PDF
Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control 被引量:5
14
作者 Zhaoyue XU Lin DU +1 位作者 Haopeng WANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期111-126,共16页
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa... Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics. 展开更多
关键词 ROBOTIC DYNAMICS MULTIBODY system SYMPLECTIC method particle swarm optimization(PSO)algorithm instantaneous optimal control
在线阅读 下载PDF
Hypersonic reentry trajectory planning by using hybrid fractional-order particle swarm optimization and gravitational search algorithm 被引量:10
15
作者 Khurram SHAHZAD SANA Weiduo HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期50-67,共18页
This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry fligh... This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry flight vehicles.The proposed method is used to calculate the control profiles to achieve the two objectives,namely a smoother trajectory and enforcement of the path constraints with terminal accuracy.The smoothness of the trajectory is achieved by scheduling the bank angle with the aid of a modified scheme known as a Quasi-Equilibrium Glide(QEG)scheme.The aerodynamic load factor and the dynamic pressure path constraints are enforced by further planning of the bank angle with the help of a constraint enforcement scheme.The maximum heating rate path constraint is enforced through the angle of attack parameterization.The Common Aero Vehicle(CAV)flight vehicle is used for the simulation purpose to test and compare the proposed method with that of the standard Particle Swarm Optimization(PSO)method and the standard Gravitational Search Algorithm(GSA).The simulation results confirm the efficiency of the proposed FPSOGSA method over the standard PSO and the GSA methods by showing its better convergence and computation efficiency. 展开更多
关键词 FRACTIONAL-ORDER Gravitational search algorithm Particle swarm optimization Reentry gliding vehicle Trajectory optimization
原文传递
Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material 被引量:24
16
作者 CHANG Qing-liang ZHOU Hua-qiang HOU Chao-jiong 《Journal of China University of Mining and Technology》 EI 2008年第4期551-555,共5页
In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by appl... In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines. 展开更多
关键词 mining engineering paste filling material neural network particle swarm optimized algorithm prediction
在线阅读 下载PDF
Power optimization of gas pipelines via an improved particle swarm optimization algorithm 被引量:5
17
作者 Zheng Zhiwei Wu Changchun 《Petroleum Science》 SCIE CAS CSCD 2012年第1期89-92,共4页
In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a power optimization mod... In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a power optimization model for gas pipelines is developed and an improved particle swarm optimization algorithm is applied. Based on the testing of the parameters involved in the algorithm which need to be defined artificially, the values of these parameters have been recommended which can make the algorithm reach efficiently the approximate optimum solution with required accuracy. Some examples have shown that the relative error of the particle swarm optimization over ant colony optimization and dynamic programming is less than 1% and the computation time is much less than that of ant colony optimization and dynamic programming. 展开更多
关键词 Gas pipeline operation optimization particle swarm optimization algorithm
原文传递
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
18
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
19
作者 Geetanjali Dei Deepak Kumar Gupta +3 位作者 Binod Kumar Sahu Amitkumar V.Jha Bhargav Appasani Nicu Bizon 《Energy Engineering》 2025年第8期3399-3431,共33页
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno... This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework. 展开更多
关键词 Integral time multiplied by absolute error(ITAE) load frequency control(LFC) particle swarm optimization(PSO) tilted integral derivative controller(TID) independent system operator(ISO) walrus optimization algorithm(WaOA) proportional integral derivative controller(PID)
在线阅读 下载PDF
Dynamic Optimization Method on Electromechanical Coupling System by Exponential Inertia Weight Particle Swarm Algorithm 被引量:5
20
作者 LI Qiang WU Jianxin SUN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期602-607,共6页
Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design para... Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimizati on. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments. 展开更多
关键词 particle swarm algorithm electromechanical coupling system dynamic optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部