期刊文献+
共找到254篇文章
< 1 2 13 >
每页显示 20 50 100
Improved Reptile Search Algorithm by Salp Swarm Algorithm for Medical Image Segmentation 被引量:3
1
作者 Laith Abualigah Mahmoud Habash +4 位作者 Essam Said Hanandeh Ahmad MohdAziz Hussein Mohammad Al Shinwan Raed Abu Zitar Heming Jia 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1766-1790,共25页
This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-S... This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-SSA.The proposed method introduces a better search space to find the optimal solution at each iteration.However,we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds.The obtained solutions by the proposed method are represented using the image histogram.The proposed RSA-SSA employed Otsu’s variance class function to get the best threshold values at each level.The performance measure for the proposed method is valid by detecting fitness function,structural similarity index,peak signal-to-noise ratio,and Friedman ranking test.Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA.The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature. 展开更多
关键词 BIOINSPIRED Reptile Search algorithm salp swarm algorithm Multi-level thresholding Image segmentation Meta-heuristic algorithm
在线阅读 下载PDF
Pilot Allocation Optimization Using Enhanced Salp Swarm Algorithm for Sparse Channel Estimation 被引量:1
2
作者 Ning Li Kun Yao +2 位作者 Zhongliang Deng Xiaohao Zhao Jianchang Qin 《China Communications》 SCIE CSCD 2021年第11期141-154,共14页
Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration me... Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE. 展开更多
关键词 OFDM channel estimation CWSSA compressed sensing salp swarm algorithm pilot allocation
在线阅读 下载PDF
Adaptive Barebones Salp Swarm Algorithm with Quasi-oppositional Learning for Medical Diagnosis Systems: A Comprehensive Analysis 被引量:1
3
作者 Jianfu Xia Hongliang Zhang +5 位作者 Rizeng Li Zhiyan Wang Zhennao Cai Zhiyang Gu Huiling Chen Zhifang Pan 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期240-256,共17页
The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning t... The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy. 展开更多
关键词 salp swarm algorithm Bare bones Quasi-oppositional based learning Function optimizations Kernel extreme learning machine
在线阅读 下载PDF
Optimization of Cognitive Radio System Using Self-Learning Salp Swarm Algorithm 被引量:1
4
作者 Nitin Mittal Harbinder Singh +5 位作者 Vikas Mittal Shubham Mahajan Amit Kant Pandit Mehedi Masud Mohammed Baz Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2022年第2期3821-3835,共15页
CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit ... CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit is extremely important to adapt or reconfigure the systemparameters.The Decision Engine is a major module in the CR-based system that not only includes radio monitoring and cognition functions but also responsible for parameter adaptation.As meta-heuristic algorithms offer numerous advantages compared to traditional mathematical approaches,the performance of these algorithms is investigated in order to design an efficient CR system that is able to adapt the transmitting parameters to effectively reduce power consumption,bit error rate and adjacent interference of the channel,while maximized secondary user throughput.Self-Learning Salp Swarm Algorithm(SLSSA)is a recent meta-heuristic algorithm that is the enhanced version of SSA inspired by the swarming behavior of salps.In this work,the parametric adaption of CR system is performed by SLSSA and the simulation results show that SLSSA has high accuracy,stability and outperforms other competitive algorithms formaximizing the throughput of secondary users.The results obtained with SLSSA are also shown to be extremely satisfactory and need fewer iterations to converge compared to the competitive methods. 展开更多
关键词 Cognitive radio meta-heuristic algorithm cognitive decision engine salp swarm algorithm
在线阅读 下载PDF
A Boosted Communicational Salp Swarm Algorithm: Performance Optimization and Comprehensive Analysis
5
作者 Chao Lin Pengjun Wang +2 位作者 Ali Asghar Heidari Xuehua Zhao Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1296-1332,共37页
The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers fro... The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers from low convergence accuracy and slow convergence speed when dealing with some complex problems. Therefore, this paper proposes an improved algorithm based on SSA and adds three improvements. First, the Real-time Update Mechanism (RUM) underwrites the role of ensuring that excellent individual information will not be lost and information exchange will not lag in the iterative process. Second, the Communication Strategy (CMS), on the other hand, uses the multiplicative relationship of multiple individuals to regulate the exploration and exploitation process dynamically. Third, the Selective Replacement Strategy (SRS) is designed to adaptively adjust the variance ratio of individuals to enhance the accuracy and depth of convergence. The new proposal presented in this study is named RCSSSA. The global optimization capability of the algorithm was tested against various high-performance and novel algorithms at IEEE CEC 2014, and its constrained optimization capability was tested at IEEE CEC 2011. The experimental results demonstrate that the proposed algorithm can converge faster while obtaining better optimization results than traditional swarm intelligence and other improved algorithms. The statistical data in the table support its optimization capabilities, and multiple graphs deepen the understanding and analysis of the proposed algorithm. 展开更多
关键词 salp swarm algorithm swarm intelligence Global optimization EXPLORATION EXPLOITATION
在线阅读 下载PDF
Double Mutational Salp Swarm Algorithm:From Optimal Performance Design to Analysis
6
作者 Chao Lin Pengjun Wang +1 位作者 Xuehua Zhao Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第1期184-211,共28页
The Salp Swarm Algorithm(SSA)is a population-based Meta-heuristic Algorithm(MA)that simulates the behavior of a group of salps foraging in the ocean.Although the basic SSA has stable exploration capability and converg... The Salp Swarm Algorithm(SSA)is a population-based Meta-heuristic Algorithm(MA)that simulates the behavior of a group of salps foraging in the ocean.Although the basic SSA has stable exploration capability and convergence speed,it still can fall into local optimum when solving complex optimization problems,which may be due to low utilization of population information and unbalanced exploration-to-exploitation ratio.Therefore,this study proposes a Double Mutation Salp Swarm Algorithm(DMSSA).In this study,a Cuckoo Mutation Strategy(CMS)and an Adaptive DE Mutation Strategy(ADMS)are introduced into the structure of the original SSA.The former mutation strategy is summarized as three basic operations:judgment,shuffling,and mutation.The purpose is to fully consider the information among search agents and use the differences between different search agents to participate in the update of positions,making the optimization process both diverse in exploration and minor in randomness.The latter strategy employs three basic operations:selection,mutation,and adaptation.As the follower part,some individuals do not blindly adopt the original follow method.Instead,the global optimal position and differences are considered,and the variation factor is adjusted adaptively,allowing the new algorithm to balance exploration,exploitation,and convergence efficiency.To evaluate the performance of DMSSA,comparisons are made with numerous algorithms on 30 IEEE CEC2014 benchmark functions.The statistical results confirm the better performance and significant difference of DMSSA in solving benchmark function tests.Finally,the applicability and scalability of DMSSA to optimization problems with constraints are further confirmed in three experiments on classical engineering design optimization problems.The source code of the proposed algorithm will be available at:https://github.com/ncjsq/Double-Mutational-Salp-Swarm-Algorithm. 展开更多
关键词 salp swarm algorithm Meta-heuristic algorithm Global optimization-Exploration EXPLOITATION BIONIC
在线阅读 下载PDF
Multi-Strategy-Driven Salp Swarm Algorithm for Global Optimization
7
作者 Zhiwei Gao Bo Wang 《Journal of Computer and Communications》 2023年第7期88-117,共30页
In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources o... In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems. 展开更多
关键词 salp swarm algorithm (SSA) Levy Flight Brownian Motion Location Update Simulation Experiment
在线阅读 下载PDF
Salp Swarm Incorporated Adaptive Dwarf Mongoose Optimizer with Lévy Flight and Gbest-Guided Strategy
8
作者 Gang Hu Yuxuan Guo Guanglei Sheng 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2110-2144,共35页
In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLS... In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems. 展开更多
关键词 Dwarf mongoose optimization algorithm Gbest-guided Lévy flight Adaptive parameter salp swarm algorithm Engineering optimization Truss topological optimization
在线阅读 下载PDF
Hybrid Chaotic Salp Swarm with Crossover Algorithm for Underground Wireless Sensor Networks 被引量:1
9
作者 Mariem Ayedi Walaa H.ElAshmawi Esraa Eldesouky 《Computers, Materials & Continua》 SCIE EI 2022年第8期2963-2980,共18页
Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource ut... Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource utilization.This paper focuses on optimizing the resource efficiency in UWSNs where underground relay nodes amplify and forward sensed data,received from the buried source nodes through a lossy soil medium,to the aboveground base station.A new algorithm called the Hybrid Chaotic Salp Swarm and Crossover(HCSSC)algorithm is proposed to obtain the optimal source and relay transmission powers to maximize the network resource efficiency.The proposed algorithm improves the standard Salp Swarm Algorithm(SSA)by considering a chaotic map to initialize the population along with performing the crossover technique in the position updates of salps.Through experimental results,the HCSSC algorithm proves its outstanding superiority to the standard SSA for resource efficiency optimization.Hence,the network’s lifetime is prolonged.Indeed,the proposed algorithm achieves an improvement performance of 23.6%and 20.4%for the resource efficiency and average remaining relay battery per transmission,respectively.Furthermore,simulation results demonstrate that the HCSSC algorithm proves its efficacy in the case of both equal and different node battery capacities. 展开更多
关键词 Underground wireless sensor networks resource efficiency chaotic theory crossover algorithm salp swarm algorithm
在线阅读 下载PDF
Locomotion-based Hybrid Salp Swarm Algorithm for Parameter Estimation of Fuzzy Representation-based Photovoltaic Modules
10
作者 Rizk M.Rizk-Allah Aboul Ella Hassanien 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期384-394,共11页
Identifying the parameters of photovoltaic(PV)modules is significant for their design and simulation.Because of the instabilities in the weather action and land surface of the earth,which cause errors in measuring,a n... Identifying the parameters of photovoltaic(PV)modules is significant for their design and simulation.Because of the instabilities in the weather action and land surface of the earth,which cause errors in measuring,a novel fuzzy representation-based PV module is formulated and developed.In this paper,a novel locomotion-based hybrid salp swarm algorithm(LHSSA)is presented to identify the parameters of PV modules accurately and reliably.In the LHSSA,better leader salps based on particle swarm optimization(PSO)are incorporated to the traditional salp swarm algorithm(SSA)in a serialized scheme with the aim of providing more valuable information for the leader salps of the SSA.By this integration,the proposed LHSSA can escape the local optima as well as guide the seeking process to attain the promising region.The proposed LHSSA is investigated on different PV models,i.e.,single-diode(SD),double-diode(DD),and PV module in crisp and fuzzy aspects.By comparing with different algorithms,the comprehensive results affirm that the LHSSA can achieve a highly competitive performance,especially on quality and reliability. 展开更多
关键词 salp swarm algorithm(SSA) particle swarm optimization(PSO) photovoltaic(PV)model HYBRIDIZATION
原文传递
基于折射反向学习机制的樽海鞘群算法 被引量:1
11
作者 钱谦 翟豪 +2 位作者 潘家文 冯勇 李英娜 《小型微型计算机系统》 北大核心 2025年第1期119-127,共9页
由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优... 由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优解的可能性.此外,在折射反向学习中引入概率扰动机制,通过概率扰动机制使搜索代理在迭代后期能够跳出局部最优,从而增强算法的全局搜索能力.最后,通过9个单峰、多峰、复合测试函数和一个工程计算问题将rOSSA与近年提出的一些主流算法进行比较,实验结果有效证明了本文改进算法的有效性. 展开更多
关键词 樽海鞘群算法 搜索性能 折射反向学习 概率扰动
在线阅读 下载PDF
考虑碳税和需求响应的新型电力系统低碳优化调度 被引量:1
12
作者 梁海平 李世航 +3 位作者 谢鑫 王金英 苏海锋 牛胜锁 《华北电力大学学报(自然科学版)》 北大核心 2025年第3期42-53,共12页
为解决新能源大规模并网后电力、电量的平衡问题,新型电力系统中往往会配置一定的储能,将风光储联合考虑,从而实现新能源的高效消纳,减少系统碳排放。在风光储联合运行的基础上,需求侧参与电力系统低碳调度能进一步有效降低系统碳排放,... 为解决新能源大规模并网后电力、电量的平衡问题,新型电力系统中往往会配置一定的储能,将风光储联合考虑,从而实现新能源的高效消纳,减少系统碳排放。在风光储联合运行的基础上,需求侧参与电力系统低碳调度能进一步有效降低系统碳排放,助力“双碳”目标的实现。首先,以碳排放流理论为基础对新型电力系统低碳优化问题构建碳排放流计算模型;其次,建立以碳排流理论为基础、碳税为需求响应的激励信号的新型电力系统双层低碳优化调度模型,并采用混合整数规划(MIP)算法与改进型樽海鞘群算法协同求解上述双层模型。通过算例仿真,对比系统在不同场景下的经济性能和碳排放,验证所提模型和改进算法的有效性和可行性,实现了新型电力系统低碳优化调度。 展开更多
关键词 新型电力系统 碳排放流 碳税 樽海鞘群算法 低碳需求响应
在线阅读 下载PDF
改进樽海鞘算法求解低碳冷链多式联运路径优化问题 被引量:1
13
作者 齐琳 马良 张惠珍 《包装工程》 北大核心 2025年第9期196-202,共7页
目的设计一种改进的樽海鞘算法求解所构建的模型,并验证该模型和算法的有效性和可行性。方法建立最小化总运输成本、碳排放成本和最小化风险多目标模型,设计融合混沌映射、信息共享机制、多种群策略的樽海鞘算法求解该模型,并用其求解... 目的设计一种改进的樽海鞘算法求解所构建的模型,并验证该模型和算法的有效性和可行性。方法建立最小化总运输成本、碳排放成本和最小化风险多目标模型,设计融合混沌映射、信息共享机制、多种群策略的樽海鞘算法求解该模型,并用其求解临沂—沈阳多式联运路径问题。结果通过随机算例、实际案例验证以及与基本樽海鞘算法对比可知,改进的樽海鞘算法展现出优越的优化性能。结论采用改进的樽海鞘算法求解低碳冷链多式联运路径优化模型,能够提供高效的解决方案,为决策者在处理多目标决策问题时提供一个有效的解决策略,有助于在实际应用中提供更优的运输路径规划方案。 展开更多
关键词 多式联运 低碳 樽海鞘算法 路径优化问题
在线阅读 下载PDF
融合多策略的改进鹈鹕优化算法 被引量:1
14
作者 李智杰 赵铁柱 +3 位作者 李昌华 介军 石昊琦 杨辉 《控制工程》 北大核心 2025年第7期1184-1197,1206,共15页
针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反... 针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反向学习策略初始化鹈鹕种群,在增加种群多样性的同时为算法寻优能力的提升打下基础;然后,在鹈鹕逼近猎物阶段引入非线性惯性权重因子以提高算法的收敛速度;最后,引入樽海鞘群算法的领导者策略以协调算法的全局搜索能力和局部寻优能力。实验测试了单一改进策略的改进效果,并将IPOA与其他9种优化算法进行了对比。实验结果证明了各改进策略的有效性和IPOA的优越性和鲁棒性。 展开更多
关键词 鹈鹕优化算法 帐篷混沌映射 折射反向学习 非线性惯性权重因子 樽海鞘群算法
原文传递
基于改进多元宇宙优化算法的多阈值彩色图像分割 被引量:1
15
作者 王世凯 李洪光 +2 位作者 李雅侨 贾诺 王涛 《哈尔滨师范大学自然科学学报》 2025年第1期44-54,共11页
与单阈值分割相比,多阈值彩色图像分割具有更高的分割精度,对复杂的彩色图像分割有着较好的效果.但是由于阈值增多导致计算量增大,整体算法的运算时间增加.针对此问题,提出了一种改进的多元宇宙优化算法对多阈值彩色图像分割算法进行优... 与单阈值分割相比,多阈值彩色图像分割具有更高的分割精度,对复杂的彩色图像分割有着较好的效果.但是由于阈值增多导致计算量增大,整体算法的运算时间增加.针对此问题,提出了一种改进的多元宇宙优化算法对多阈值彩色图像分割算法进行优化.首先,对多元宇宙优化算法进行改进,引入樽海鞘优化算法中的收敛因子,提高算法的寻优能力;然后,选取多阈值大津法作为图像分割算法,将其作为优化算法的适应度函数;最后,通过对标准数学公式的仿真实验,以及选取四幅伯克利大学图像库图像进行实验分析,实验结果表明该算法能够对图像进行精确分割,在PSNR(Peak Signal to Noise Ratio)和FSIM(Feature Similarity Index)两个指标上均优于其他算法,提高了分割精度. 展开更多
关键词 多阈值图像分割 最大类间方差法 多元宇宙优化 樽海鞘优化
在线阅读 下载PDF
基于改进樽海鞘群算法的无人机山区巡航
16
作者 谢小正 杜敏 +1 位作者 张子健 赵维吉 《兰州理工大学学报》 北大核心 2025年第4期43-50,共8页
针对樽海鞘群算法搜索精度低、收敛速度慢和寻优稳定性差等缺陷,提出了基于混沌映射的自适应惯性权重樽海鞘群算法.首先,在初始化阶段采用Tent混沌映射种群,使搜索空间分布更均匀;然后,在领导者位置添加Logistic混沌,在追随者位置引入... 针对樽海鞘群算法搜索精度低、收敛速度慢和寻优稳定性差等缺陷,提出了基于混沌映射的自适应惯性权重樽海鞘群算法.首先,在初始化阶段采用Tent混沌映射种群,使搜索空间分布更均匀;然后,在领导者位置添加Logistic混沌,在追随者位置引入自适应惯性权重,从而增强种群的多样性;最后,对食物源进行Gauss变异操作,使算法跳出局部最优,提升搜索精度.针对改进的樽海鞘群算法进行收敛曲线分析、函数测试结果对比和算法排名评估.结果表明,基于混沌映射的自适应惯性权重樽海鞘群算法搜索精度更高、收敛速度更快、寻优能力更强且稳定性更佳.在复杂山区巡航规划最优路径的仿真实验表明,与樽海鞘群算法相比,改进算法规划质量更高、路径更短且求解更稳定,更适用于山区环境中无人机的路径规划. 展开更多
关键词 樽海鞘群算法 混沌映射 自适应惯性权重 路径规划 无人机
在线阅读 下载PDF
多目标约束下绿色柔性车间机器与AGV集成调度优化
17
作者 张天瑞 朱广豪 《组合机床与自动化加工技术》 北大核心 2025年第3期232-240,共9页
为降低柔性制造车间加工过程和运输过程的综合能耗,建立了绿色柔性作业车间集成调度问题的双目标优化模型。提出了一种改进型多目标樽海鞘群算法求解,该算法基于工序、机器和AGV三层编码并采用反向学习的初始化策略提高初始种群的质量,... 为降低柔性制造车间加工过程和运输过程的综合能耗,建立了绿色柔性作业车间集成调度问题的双目标优化模型。提出了一种改进型多目标樽海鞘群算法求解,该算法基于工序、机器和AGV三层编码并采用反向学习的初始化策略提高初始种群的质量,采用基于快速非支配排序和外部存储库的选择操作结合改进的交叉变异算子进行非支配解集更新,保证非劣解均匀分布;设置了3种领域结构,基于变领域搜索算法作对存储库中非支配解执行变邻域搜索,提高了局部搜索能力。通过测试算例仿真实验和案例应用,证明了所提算法在解决柔性制造车间机器与AGV集成调度多目标优化问题的有效性。 展开更多
关键词 绿色柔性车间 集成调度 多目标优化 樽海鞘群算法 变领域搜索
在线阅读 下载PDF
求解无人机三维路径规划问题的动态多子群樽海鞘群算法
18
作者 巫光福 王小林 《科学技术与工程》 北大核心 2025年第13期5501-5514,共14页
无人机三维路径规划问题是在复杂三维环境中找到起点与终点之间最优路径的组合优化问题,但大多数路径规划算法难以在可接受的时间和精度范围内找到可行路径,因此提出了一种基于K-means++聚类优化的动态多子群樽海鞘群算法用于解决上述... 无人机三维路径规划问题是在复杂三维环境中找到起点与终点之间最优路径的组合优化问题,但大多数路径规划算法难以在可接受的时间和精度范围内找到可行路径,因此提出了一种基于K-means++聚类优化的动态多子群樽海鞘群算法用于解决上述问题。首先,在三维环境模型中结合高度成本提出新的成本函数,将路径规划问题转化为多维函数优化问题。其次,采用K-means++聚类算法对种群进行分群,并设计动态多子群机制均衡算法的全局搜索与局部开发;各子群结合多策略协同改进,在避免算法陷入局部最优的同时提高全局寻优能力。最后,在12个CEC2017基准测试函数中验证了该算法对比其他5种算法(ISSA、MSNSSA、IBSO、MBFPA、SSA)的性能后,将其应用于三维环境中对最优路径规划问题进行求解。在不同的环境模型下的仿真实验结果表明,该算法的平均有效路径率相较于其他5种算法分别提高了15.5%、11%、23%、20.5%和18%,这证实了该算法在复杂环境下具有优秀的寻优能力。 展开更多
关键词 三维路径规划 成本函数 樽海鞘群算法 K-means++聚类算法 动态多子群 协同改进
在线阅读 下载PDF
多策略混合改进樽海鞘群算法的光伏MPPT控制研究 被引量:1
19
作者 罗善峰 陈芳芳 +2 位作者 徐天奇 李华鑫 程三榜 《现代电子技术》 北大核心 2025年第8期109-114,共6页
针对传统光伏最大功率点追踪(MPPT)方法在光伏阵列因环境因素处于局部遮阴时出现陷入局部最优的情况,为实现对太阳能的高效利用,基于樽海鞘群算法对低维度优化问题的优势,提出一种多策略混合改进樽海鞘群算法的MPPT控制。该控制采用改进... 针对传统光伏最大功率点追踪(MPPT)方法在光伏阵列因环境因素处于局部遮阴时出现陷入局部最优的情况,为实现对太阳能的高效利用,基于樽海鞘群算法对低维度优化问题的优势,提出一种多策略混合改进樽海鞘群算法的MPPT控制。该控制采用改进型Logistic混沌映射对樽海鞘种群进行初始化,提高了樽海鞘种群的多样性。同时,利用麻雀搜索算法发现者行为代替樽海鞘领导者行为,提升了算法的全局探索能力,避免了算法陷入局部最优解。Matlab/Simulink仿真实验表明,所提方法在静态局部遮阴和动态局部遮阴两种情况下都具有较好的收敛性,并且相较于粒子群算法和樽海鞘群算法,其在收敛速度和寻优精度等方面都有明显提升。 展开更多
关键词 最大功率点追踪 樽海鞘群算法 光伏阵列 改进Logistic混沌映射 局部遮阴 麻雀搜索算法
在线阅读 下载PDF
基于频率自适应的Buck-Boost矩阵变换器主电路参数优选方法 被引量:1
20
作者 杨昭 张小平 钟达栩 《太阳能学报》 北大核心 2025年第7期290-297,共8页
提出一种基于频率自适应的Buck-Boost矩阵变换器(BBMC)主电路参数优选方法。确定其优化对象与优化目标,建立相关数学模型及其多目标优化适应度函数,在此基础上提出采用樽海鞘群优化算法对其主电路参数展开优化研究,并进而针对不同额定... 提出一种基于频率自适应的Buck-Boost矩阵变换器(BBMC)主电路参数优选方法。确定其优化对象与优化目标,建立相关数学模型及其多目标优化适应度函数,在此基础上提出采用樽海鞘群优化算法对其主电路参数展开优化研究,并进而针对不同额定输出频率下的最优主电路参数采用数值拟合方法研究确定其间变化规律的函数关系式,最后通过构建仿真模型与硬件实验装置对其效果进行验证。 展开更多
关键词 Buck-Boost矩阵变换器 频率自适应 参数优化 樽海鞘群算法 多目标优化 数值拟合
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部