Exploring earth-abundant,highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting.However,due to their distinct free energies and conducting behaviors(elec...Exploring earth-abundant,highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting.However,due to their distinct free energies and conducting behaviors(electron/hole),balancing the catalytic efficiency between hydrogen and oxygen evolution remains challenging for achieving bifunctional electrocatalysts.Here,we report a locally-doped MoS_(2)monolayer with an in-plane heterostructure acting as a bifunctional electrocatalyst and apply it to the overall water splitting.In this heterostructure,the core region contains Mo/S vacancies,while the ring region was doped by Fe atoms(in two substitution configurations:1FeMo and 3FeMo-VS clusters)with a p-type conductive characteristic.Our micro-cell measurements,combined with density functional theory(DFT)calculations,reveal that the vacancies-rich core region presents remarkable hydrogen evolution reaction(HER)activity while the Fe-doped ring gives an excellent oxygen evolution reaction(OER)activity,thus forming an in-plane bifunctional electrocatalyst.Finally,as a proof-of-concept for overall water splitting,we constructed a full-cell configuration based on a locally-doped MoS_(2)monolayer,which achieved a cell voltage of 1.87 V at 10 mA·cm^(-2),demonstrating outstanding performance in strong acid electrolytes.Our work provides insight into the hetero-integration of bifunctional electrocatalysts at the atomic level,paving the way for designing transition metal dichalcogenide catalysts with activity-manipulated regions capable of multiple reactions.展开更多
1 Introduction Stratigraphic correlation is the most important basic work in oil and gas exploration and development,Scientific and reasonable stratigraphic correlation is the premise of developing fine reservoir desc...1 Introduction Stratigraphic correlation is the most important basic work in oil and gas exploration and development,Scientific and reasonable stratigraphic correlation is the premise of developing fine reservoir description,and it is展开更多
基金supported by the National Natural Science Foundation of China(Nos.22175060 and 22376062)JSPS Grant-in-Aid for Scientific Research(Nos.JP21H05235,JP22H05478 and JP22F22358)+1 种基金China Postdoctoral Science Foundation(No.2022M722867)the Key Research Project of Higher Education Institutions in Henan Province(No.23A530001).
文摘Exploring earth-abundant,highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting.However,due to their distinct free energies and conducting behaviors(electron/hole),balancing the catalytic efficiency between hydrogen and oxygen evolution remains challenging for achieving bifunctional electrocatalysts.Here,we report a locally-doped MoS_(2)monolayer with an in-plane heterostructure acting as a bifunctional electrocatalyst and apply it to the overall water splitting.In this heterostructure,the core region contains Mo/S vacancies,while the ring region was doped by Fe atoms(in two substitution configurations:1FeMo and 3FeMo-VS clusters)with a p-type conductive characteristic.Our micro-cell measurements,combined with density functional theory(DFT)calculations,reveal that the vacancies-rich core region presents remarkable hydrogen evolution reaction(HER)activity while the Fe-doped ring gives an excellent oxygen evolution reaction(OER)activity,thus forming an in-plane bifunctional electrocatalyst.Finally,as a proof-of-concept for overall water splitting,we constructed a full-cell configuration based on a locally-doped MoS_(2)monolayer,which achieved a cell voltage of 1.87 V at 10 mA·cm^(-2),demonstrating outstanding performance in strong acid electrolytes.Our work provides insight into the hetero-integration of bifunctional electrocatalysts at the atomic level,paving the way for designing transition metal dichalcogenide catalysts with activity-manipulated regions capable of multiple reactions.
基金the National Natural Science Foundation of China(Grant No. 41172106) for financial support of this work
文摘1 Introduction Stratigraphic correlation is the most important basic work in oil and gas exploration and development,Scientific and reasonable stratigraphic correlation is the premise of developing fine reservoir description,and it is