期刊文献+
共找到36,566篇文章
< 1 2 250 >
每页显示 20 50 100
Surface flux–induced salinity change and its effects on ocean stratification in response to global warming
1
作者 Hai Zhi Tianyi Ma +2 位作者 Rong-Hua Zhang Xiaokun Wang Minmin Wu 《Atmospheric and Oceanic Science Letters》 2026年第1期59-65,共7页
Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diver... Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming. 展开更多
关键词 Sea surface salinity change Pattern amplification Upper-ocean stratification Flux-anomaly-forced model intercomparison project
在线阅读 下载PDF
Effects of Soil Salinity and Alkalinity on Grain Quality of Tolerant,Semi-Tolerant and Sensitive Rice Genotypes 被引量:21
2
作者 P.SUREKHA RAO B.MISHRA S.R.GUPTA 《Rice science》 SCIE 2013年第4期284-291,共8页
Soil salinity and alkalinity adversely affects the productivity and grain quality of rice. The grain quality of 19 rice genotypes characterized as salt tolerant (T), semi-tolerant (ST) and sensitive (S) was asse... Soil salinity and alkalinity adversely affects the productivity and grain quality of rice. The grain quality of 19 rice genotypes characterized as salt tolerant (T), semi-tolerant (ST) and sensitive (S) was assessed in lysimeters containing saline and highly alkaline soils. Head rice recovery was reduced by salinity stress whereas it was not affected by alkalinity stress. The ratio of length to width (grain dimensions) was significantly reduced in the T genotype even at low electrical conductivity (EC, 4 mS/cm) and alkalinity (pH 9.5), whereas in the ST genotype, it was significantly reduced at high salinity (EC 8 mS/cm). There was no significant effect of any levels of salinity or alkalinity on grain dimensions in the S genotype. Amylose content was significantly reduced in T and ST groups even at low EC (4 mS/cm) and alkalinity (pH 9.5) and the effect in the S genotype was only at high salinity. Starch content showed significant reduction at high salinity and alkalinity (EC 8 mS/cm and pH 9.8) in the T and ST genotypes and no significant effect was observed in the S genotype. The effect of both levels of salinity (EC 4 and 8 mS/cm) and high alkalinity (pH 9.8) on gel consistency was observed only in the S genotype. The tolerant genotypes IR36 under high salinity, and CSIR10 and CSR11 under alkali stress showed less reduction in amylose content. The T genotype BR4-10, and ST genotypes CSR30, CSR29 and CSR13 showed better gel consistency under saline and alkali stress. Amylose content was affected even at low salinity stress and thus important to be considered in breeding rice for salt tolerance. Overall, the grain quality of T and ST genotypes was less affected by saline and alkali stress compared to S ones. 展开更多
关键词 alkalinity amylose content electrical conductivity gel consistency rice salinity starch content
在线阅读 下载PDF
Combined application of a straw layer and flue gas desulphurization gypsum to reduce soil salinity and alkalinity 被引量:11
3
作者 Yonggan ZHAO Yan LI +2 位作者 Shujuan WANG Jing WANG Lizhen XU 《Pedosphere》 SCIE CAS CSCD 2020年第2期226-235,共10页
Burying a straw layer and applying flue gas desulphurization(FGD)gypsum are effective practices to ameliorate soil salinization or alkalization and to increase crop yield;however,little information exists on the effec... Burying a straw layer and applying flue gas desulphurization(FGD)gypsum are effective practices to ameliorate soil salinization or alkalization and to increase crop yield;however,little information exists on the effects of such integration in saline-alkali soils.A soil column experiment was conducted to investigate the effects of a straw layer plus FGD gypsum on soil salinity and alkalinity.We placed a straw layer(5 cm thick)at a depth of 30 cm and mixed FGD gypsum into the 0–20 cm soil layer at application rates of 7.5,15.0,22.5,and 30.0 t ha^-1,with no straw layer and FGD gypsum as a control(CK).The soil water content in the 0–30 cm soil layer was significantly higher(>7.8%)in the treated soil profiles after infiltration than in the CK,but decreased after evaporation.The electrical conductivity(EC)of the 10–30 cm soil layer was 230.2%and 104.9%higher in the treated soil profiles than in the CK after infiltration and evaporation,respectively,and increased with increasing rates of FGD gypsum application,with Ca^2+and SO4^2-being the main dissolved salts.Compared to those in the CK,the concentrations of Na^+,Cl^-,and HCO3-decreased in the treated soil profiles at depths above 55 cm,but the other soluble ions increased,after infiltration.A similar trend occurred after evaporation for all soluble ions except for HCO3-.The p H and exchangeable sodium percentage in the treated soil profiles were significantly lower than those in the CK over the entire profile,and decreased with increasing FGD gypsum application rates.Therefore,the incorporation of a straw layer plus FGD gypsum can reduce salinity and alkalinity,but the quantity of FGD gypsum should be controlled in saline-alkali soils. 展开更多
关键词 alkaline SOIL salinE-ALKALI stress saline SOIL salt accumulation secondary salinIZATION SOIL AMELIORATION SOIL reclamation
原文传递
Research progress on plant tolerance to soil salinity and alkalinity in sorghum 被引量:43
4
作者 HUANG Rui-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期739-746,共8页
Sorghum is an important source of food, feed and raw material for brewing, and is expected to be a promising bioenergy crop. Sorghum is well known for its strong resistance to abiotic stress and wide adaptability, and... Sorghum is an important source of food, feed and raw material for brewing, and is expected to be a promising bioenergy crop. Sorghum is well known for its strong resistance to abiotic stress and wide adaptability, and salt tolerance is one of its main characteristics. Increasing sorghum planting acreage on saline-alkalien land is one way to effectively use this kind of marginal soil. In this paper, domestic and overseas research on plant tolerance to soil salinity and alkalinity in sorghum, including salt-tolerant genetics and breeding, physiology, cultivation, and identification of tolerant germplasms, are reviewed. Suggestions for further studies on salinity and alkalinity tolerance in sorghum are given, and the prospects for sorghum production in saline-alkalien land are discussed. 展开更多
关键词 SORGHUM saline-alkaline resistance genetics and breeding stress physiology resistance evaluation
在线阅读 下载PDF
Optimal drip irrigation leaching amount and timing enhanced cotton fiber yield, quality and nitrogen uptake by regulating soil salinity and nitrate nitrogen in saline-alkaline fields
5
作者 Xiaoqiang Liu Mingqi Li +4 位作者 Dong Xue Shuai He Junliang Fan Fucang Zhang Feihu Yin 《Journal of Integrative Agriculture》 2025年第6期2389-2409,共21页
Improving cotton fiber quality can increase the economic income of cotton farmers, but achieving high fiber quality without decreasing cotton fiber yield remains a major challenge in saline-alkaline cotton fields. A f... Improving cotton fiber quality can increase the economic income of cotton farmers, but achieving high fiber quality without decreasing cotton fiber yield remains a major challenge in saline-alkaline cotton fields. A field experiment was conducted in 2020 and 2021 on saline-alkaline soil with cotton under drip irrigation to examine how amount and timing of leaching affected soils salinity, cotton fiber yield and quality. There were five leaching amounts(CK: 0 mm, W1: 75 mm, W2: 150 mm, W3: 225 mm and W4: 300 mm) and three leaching timings(T1: once at the seedling stage, T2: twice at the seedling and budding stages, and T3: thrice at the seedling, budding and pollen-setting stages). Soil salinity, soil nitrate nitrogen(NO_(3)-N), cotton nitrogen(N) uptake, irrigation water productivity(IWP), cotton fiber yield, fiber length, fiber uniformity, fiber strength, fiber elongation, micronaire and fiber quality index(FQI) were investigated. The results indicated that soil salinity and NO_(3)-N reduced with increasing leaching amount. The N uptake of cotton bolls was greater than in cotton leaves, stems and roots, and total N accumulation increased with increasing leaching amount. The optimal cotton fiber yield and IWP occurred in treatment W3T2, and were 3,199 and 2,771 kg ha^(-1), and 0.5482 and 0.4912 kg m-3in 2020 and 2021, respectively. Fiber length, strength, elongation, and uniformity increased with increasing leaching amount, while there was a negative relationship between fiber micronaire and leaching amount. Soil salinity, NO_(3)-N and fiber micronaire were negatively correlated with fiber quality(i.e., length, strength, elongation and uniformity) and yield, nitrogen uptake of various organs(i.e., root, stems and leaves) and whole plant nitrogen uptake. Pearson correlation analysis revealed that fiber elongation was most sensitive to soil salinity. The method of Entropy–Order Preference by Similarity to Ideal Solution(EM–TOPSIS) indicated that leaching of 300 mm of water applied equally at the seedling and budding periods was the optimal treatment to maintain soil salinity and nutrient levels and achieve high cotton fiber yield and quality. In conclusion, the optimal level of leaching treatment decreased soil salinity and improved nitrogen uptake and was beneficial to achieve high fiber yield and quality. Our results will be significant for guiding drip irrigation practice of leaching on saline-alkaline soils for sustainable cotton fiber production. 展开更多
关键词 fiber yield fiber quality LEACHING soil salinity drip irrigation
在线阅读 下载PDF
Transcriptomic insights into the adaptive mechanisms of antennal glands in mud crab(Scylla paramamosain)to acute chloride-type low-salinity alkaline water stress
6
作者 Jinwei WANG Xiaosong JIANG +2 位作者 Changkao MU Chunlin WANG Huan WANG 《Journal of Oceanology and Limnology》 2025年第6期1938-1950,共13页
The mud crab(Scylla paramamosain)has been successfully cultivated in chloride-type low-salinity alkaline waters,yet the molecular mechanisms underlying its adaptation to this environment remain elusive.This study seek... The mud crab(Scylla paramamosain)has been successfully cultivated in chloride-type low-salinity alkaline waters,yet the molecular mechanisms underlying its adaptation to this environment remain elusive.This study seeks to uncover the adaptation mechanisms of the antennal gland of mud crab under acute chloride-type low-salinity alkaline water stress.Three-hundred crabs were randomly selected and divided into two groups:the low salinity(LS,salinity of 2.2)group and the control group(CK,salinity of 23.4).Following a 120-h experimental period,the antennal glands were sampled for transcriptomic analysis.Experimental results show that acute chloride-type low-salinity saline-alkaline water stress led to a significant decline in the survivorship of mud crab.Through comparative transcriptomic analysis,we identified 923 differentially expressed genes(DEGs),among which 272 were upregulated and 651 were downregulated.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses revealed that the majority of these DEGs are closely linked to functions such as energy metabolism and osmoregulation.Notably,the pathways involving oxidoreductase activity,oxidative phosphorylation,symporter activity,and intracellular calcium-activated chloride channels were significantly enriched,highlighting their pivotal roles in enhancing the osmoregulatory capacity of mud crab and maintaining internal homeostasis in chloride-type low-salinity alkaline environments.Additionally,the upregulation of genes such as SLC6A9,SLC6A4,and FH further facilitated transmembrane ion transport and energy metabolism,thereby reinforcing intracellular isosmotic regulation.However,these controls also pose a potential risk of oxidative stress.Therefore,the antennal gland plays a crucial role in the response of mud crab to acute chloride-type low-salinity alkaline water stress.This study provides new insights into the adaptive mechanisms of mud crab and lays a theoretical foundation for enhancing chloride-type low-salinity alkaline water aquaculture techniques. 展开更多
关键词 Scylla paramamosain chloride-type low-salinity alkaline water antennal gland transcriptome OSMOREGULATION
在线阅读 下载PDF
Germination and Photosynthetic Responses to Salinity and Alkalinity in Avicenna marina Propagules 被引量:1
7
作者 Abdallah Atia Ahmed Abdallah Hussain Barhoumi Zouhaier 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第5期1015-1026,共12页
Avicenna marina(Forssk.)Vierh is a halophytic mangrove.The reproductive unit is green and has photosynthetic propagules.Mangroves are naturally exposed to fluctuations in some abiotic factors at the soil surface,inclu... Avicenna marina(Forssk.)Vierh is a halophytic mangrove.The reproductive unit is green and has photosynthetic propagules.Mangroves are naturally exposed to fluctuations in some abiotic factors at the soil surface,including salinity and alkalinity.The objective of this study was to determine the effects of two salts including NaCl and NaHCO_(3)on germination processes and discuss the relationships between cotyledon photosynthesis and embryo axis growth in A.marina propagules.These propagules came from Al Birk,located on the shoreline of the Saudi Red Sea.The results showed that the studied salts did not affect neither the final germination percentage nor the embryo axis growth.However,rooting and root growth were delayed by both salts at 300 mM and were strongly inhibited by 600 mM NaHCO_(3).Both NaCl and NaHCO_(3)reduced the photosynthetic activity.These two salts did not affect the other photosynthetic parameters,including stomatal conductance,net transpiration,and intercellular CO_(2).Thereafter,the reduction in net photosynthesis was not related to any limitation of stomatal conductance.The early germination phase was independent of cotyledon photosynthesis,whereas rooting and root growth may be limited by reduced photosynthesis under NaCl and NaHCO_(3). 展开更多
关键词 Avicenna marina propagules cotyledons embryo growth GERMINATION photosynthesis alkalinity salinity
在线阅读 下载PDF
Soil Salinity and Alkalinity Map Preparation Based on Spatial Analysis of GIS (Case Study: Tabriz Plain)
8
作者 A. Farajnia J. Yarahmadi 《Open Journal of Geology》 2017年第6期778-788,共11页
Better management of agricultural fields is related to valuable information which can derived from soil salinity and alkalinity maps. These maps are considered as one of the most important factors which restrict plant... Better management of agricultural fields is related to valuable information which can derived from soil salinity and alkalinity maps. These maps are considered as one of the most important factors which restrict plant growth as well as decline crops yield. The objective of this research was preparing of soil salinity and alkalinity maps in Tabriz plain over 50,000 hectares based on different techniques of spatial analysis in GIS software. For this mean, study area was divided in 1500 × 1500 m2 grid cells. Then, geographical coordinate of each grid recorded in UTM system. So, they were transferred into GPS for navigating to the exact excavation location. After soil sampling and transferring to the lab, their EC and PH were measured in saturation extract of soil samples. So, spatial distribution of soil sampling points was prepared in form of point map by GIS software. Generalization of point information to surface was performed using different interpolation algorithms and based on standards of Soil and Water Research Institute. Accuracy of interpolated maps was evaluated due to the MAE and MBE values. The results showed that the lowest observed error is related to the Spline method and therefore, this method was used for spatial modeling of salinity and alkalinity maps in the intended area. The research findings demonstrated that from total of 50,000 hectares, only 3066 hectares were without salinity and alkalinity limitation (6.1%), 9066 hectares had low salinity and alkalinity (18.1%);17,772 hectares had average limitation for salinity and alkalinity (35.6%) and the remaining 20,096 hectares had high and very high limitation for salinity and alkalinity. 展开更多
关键词 GIS INTERPOLATION Techniques salinity and alkalinity MAP Tabriz PLAIN
暂未订购
Effects of salinity, carbonate alkalinity, and pH on physiological indicators of nutrition transporter for potential habitat restoration of amphipod Eogammarus possjeticus
9
作者 XUE Suyan MAO Yuze +2 位作者 WANG Jinye FANG Jianguang ZHAO Fazhen 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第6期1925-1935,共11页
The effects of three environmental factors,salinity,carbonate alkalinity,and pH,on the survival,feeding,and respiratory metabolism of Eogammarus possjeticus(Amphipoda:Gammaridae)were investigated experimentally.The re... The effects of three environmental factors,salinity,carbonate alkalinity,and pH,on the survival,feeding,and respiratory metabolism of Eogammarus possjeticus(Amphipoda:Gammaridae)were investigated experimentally.The results show that E.possjeticus could tolerate a broad salinity range.The 24-h lowest median lethal salinity was 2.70,and the highest was 47.33.The 24-h median lethal alkalinity and pH were 23.05 mmol/L and 9.91,respectively;both values decreased gradually with time.Different values of salinity,carbonate alkalinity,and pH resulted in significant differences in the cumulative mortality(P<0.05).The ingestion rate and feed absorption efficiency were significantly affected by the coupling of the three environmental factors(P<0.05).With increases in carbonate alkalinity,salinity,and pH,both ingestion rate and feed absorption efficiency exhibited a downward trend,indicating a decline in feeding ability under high salinity and more alkaline water conditions.The coupling of salinity,carbonate alkalinity,and pH also had a significant effect on respiration and excretion(P<0.05).The oxygen consumption rate increased first and then decreased with increasing carbonate alkalinity.Under the same carbonate alkalinity values,the oxygen consumption rate increased with increasing salinity.Under the same carbonate alkalinity and salinity,the oxygen consumption rate initially increased and then decreased with increasing pH.The O:N ratio first increased and then decreased with increasing carbonate alkalinity.When carbonate alkalinity was less than 6 mmol/L,the O:N ratio increased with increasing salinity and decreased with increasing pH.The results demonstrate that changes in salinity,carbonate alkalinity,and pH had a measurable impact on the osmotic pressure equilibrium in E.possjeticus and affected the energy supply mode(i.e.ratio of metabolic substrate). 展开更多
关键词 Eogammarus possjeticus saline and alkaline water survival FEEDING respiratory metabolism
在线阅读 下载PDF
Floral Species as Environmental Quality Indicators in Jordan: High Salinity and Alkalinity Environments
10
作者 Ikhlas Alhejoj Klaus Bandel Elias Salameh 《Journal of Environmental Protection》 2015年第5期494-514,共21页
In this study the occurrence and ecology of plant assemblages are investigated, mainly for use as indicator plants of saline grounds in several locations in Jordan. High alkalinity and H2S-rich water tolerant species ... In this study the occurrence and ecology of plant assemblages are investigated, mainly for use as indicator plants of saline grounds in several locations in Jordan. High alkalinity and H2S-rich water tolerant species of plants are also discussed. Plants growing on salty grounds have distinct composition regarding their place in the taxonomic system. Plant assemblages and their degree of tolerance to salinity as in Karama area in the Jordan Valley are found to be distinct from that of Azraq Sabkha (Cental Jordan) with salt-tolerant flora. Karama area provides the living space for Mesembryanthemum on the saltiest ground, Suaeda further up on wetter surrounding and Salicornia succeeding on moist and less salty grounds. Drier places with rather salty grounds have bushes of Arthrocnemum, while slightly less salty places are preferred by Tamarix tetragyna. When Prosopis bushes appear, salt is only present periodically in the ground, as is also the case with Atriplex halimus and Capparis. In Azraq the former beach of a temporal lake is characterized by two species of Spergularia in its saltier parts and by Tamarix passerinoides. It was recognized that Tamarix, Phragmites, Chenopodium, and Inula represented alkaline water tolerant plants. The study concludes that the salt concentration in the ground is reflected in the composition of the flora growing on it. On the other hand, plants are also found vulnerable to fluctuation in the salt concentration of their environments with different resistance degrees. This makes them excellent bioindicators of salty environments. 展开更多
关键词 BIOINDICATORS alkalinity TOLERANT Plants Halophyts ENVIRONMENTAL Quality Karama Azraq
暂未订购
Land use effects on soil organic carbon, nitrogen and salinity in saline-alkaline wetland 被引量:6
11
作者 WenJie Liu YongZhong Su Rong Yang XueFengWang XiaoYang 《Research in Cold and Arid Regions》 2010年第3期263-270,共8页
Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fr... Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area. 展开更多
关键词 labile fraction carbon easily oxidized carbon microbial biomass carbon salinity nitrate-nitrogen saline-alkaline wetland
在线阅读 下载PDF
Reduced Salinity Interacts with Enriched Nitrogen to Enhance the Photosynthetic Efficiency of Chlorophyta Ulva fasciata 被引量:1
12
作者 WAN Mingyue BAI Lingling +3 位作者 NI Guangyan LI Li TAN Yehui LI Gang 《Journal of Ocean University of China》 2025年第1期130-138,共9页
Macroalgae dominate nutrient dynamics and function as high-value foods for microbial,meio-and macrofaunal communities in coastal ecosystems.Because of this vital role,it is important to clarify the physiological infor... Macroalgae dominate nutrient dynamics and function as high-value foods for microbial,meio-and macrofaunal communities in coastal ecosystems.Because of this vital role,it is important to clarify the physiological information associated with environmental changes as it reflects their growth potential.To evaluate the effects of the changes in salinity and nutrients,the photosynthetic efficiency of a green macroalga Ulva fasciata from the Daya Bay was tested at a range of salinity(i.e.,31 to 10 psu)and nitrogen content(i.e.,5 to 60μmol L^(-1)).The results showed that cellular chlorophyll a(Chl a),carbohydrate and protein contents of U.fasciata were increased due to reduced salinity,and were decreased by interactive nitrogen enrichment.Within a short culture period(i.e.,18 h),the reduced salinity decreased the maximum photosynthetic efficiency(rETRmax and Pmax)derived from the rapid light response curve and photosynthetic oxygen evolution rate versus irradiance curve,respectively,as well as the saturation irradiance(E_(K)).This reducing effect diminished with enlonged cultivation time and reversed to a stimulating effect after 24 h of cultivation.The nitrogen enrichment stimulated the rETRmax and Pmax,as well as the E_(K),regardless of salinity,especially within short-term cultivation period(i.e.,<24 h).In addition,our results indicate that seawater freshening lowers the photosynthetic efficiency of U.fasciata in the short term,which is mitigated by nitrogen enrichment,but stimulates it in the long term,providing insight into how macroalgae thrive in coastal or estuarine waters where salinity and nutrients normally covary strongly. 展开更多
关键词 reduced salinity nitrogen enrichment photosynthetic efficiency Ulva fasciata Daya Bay
在线阅读 下载PDF
The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis 被引量:7
13
作者 Baodan Jin Shuying Wang +2 位作者 Liqun Xing Baikun Li Yongzhen Peng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第5期80-90,共11页
The effect of salinity on sludge alkaline fermentation at low temperature(20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride(Na Cl, 0–25 g/L) were added into the... The effect of salinity on sludge alkaline fermentation at low temperature(20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride(Na Cl, 0–25 g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand(SCOD) increased with salinity. The hydrolysate(soluble protein, polysaccharide) and the acidification products(short chain fatty acids(SCFAs), NH+4–N, and PO_4^(3-)–P) increased with salinity initially, but slightly declined respectively at higher level salinity(20 g/L or 20–25 g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt.Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH+4–N on SCFA accumulation was increased. 展开更多
关键词 alkaline anaerobic fermentation Sodium chloride Hydrolytic acidification Short chain fatty acids Haldane inhibition kinetics Pearson correlation coefficient
原文传递
Effects of salinity and betaine addition on anaerobic granular sludge properties and microbial community succession patterns in organic saline wastewater 被引量:1
14
作者 Zhifei Zhang Jinquan Wan +3 位作者 Gang Ye Yan Wang Yuwei Bai Zhicheng Yan 《Journal of Environmental Sciences》 2025年第1期310-321,共12页
In this study,the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities,sludge characteristics and microbial communities were investigated.The increas... In this study,the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities,sludge characteristics and microbial communities were investigated.The increase in salinity resulted in a decrease in particle size of the granular sludge,which was concentrated in the range of 0.5-1.0 mm.The content of EPS(extracellular polymeric substances)in the granular sludge gradually increased with increasing salinity and the addition of betaine(a typical compatible solute).Meanwhile,the microbial community structure was significantly affected by salinity,with high salinity reducing the diversity of bacteria.At higher salinity,Patescibacteria and Proteobacteria gradually became the dominant phylum,with relative abundance increasing to 13.53%and 12.16%at 20 g/L salinity.Desulfobacterota and its subordinate Desulfovibrio,which secrete EPS in large quantities,dominated significantly after betaine addition.Their relative abundance reached 13.65%and 7.86%at phylum level and genus level.The effect of these changes on the treated effluent was shown as the average chemical oxygen demand(COD)removal rate decreased from 82.10%to 79.71%,78.01%,68.51%and 64.55%when the salinity gradually increased from 2 g/L to 6,10,16 and 20 g/L.At the salinity of 20 g/L,average COD removal increased to 71.65%by the addition of 2 mmol/L betaine.The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment,which provided a feasible strategy for anaerobic treatment of organic saline wastewater. 展开更多
关键词 Organic saline wastewater Anaerobic granular sludge Compatible solute Extracellular polymeric substance Microbial community
原文传递
Corrigendum to“The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis”[J.Environ.Sci.43(2016)80—90]
15
作者 Baodan Jin Shuying Wang +2 位作者 Liqun Xing Baikun Li Yongzhen Peng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第5期301-301,共1页
The authors regret that the printed version of the above article contained an error of the afliation of one of the co-authors Baikun Li.The correct and final version is shown below:Baikun Li,Department of Civil and En... The authors regret that the printed version of the above article contained an error of the afliation of one of the co-authors Baikun Li.The correct and final version is shown below:Baikun Li,Department of Civil and Environmental Engineering,University of Connecticut,Storrs,CT 06269,USA The authors would like to apologise for any inconvenience caused. 展开更多
关键词 alkalinE salinity EFFECT
原文传递
Assessment of Salinity Tolerance and Ecotypic Variability in Vicia narbonensis L.:Morphological,Physiological,and Biochemical Responses
16
作者 Hocine Bougrine Salah Hadjout +7 位作者 Mohamed Zouidi Abdeldjalil Belkendil Amer Zeghmar Chaouki Boulekdam Walid Ouaret Walid Soufan Fathi Abdellatif Belhouadjeb Amar Mebarkia 《Phyton-International Journal of Experimental Botany》 2025年第1期251-267,共17页
Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along th... Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along the southern Mediterranean rim,including Algeria,which primarily focuses on pastoral and forage practices.This study investigates salinity tolerance and ecotypic variability in Vicia narbonensis L.,a fodder legume species recognized for its potential to reclaim marginal soils.Morphological,physiological,and biochemical responses were assessed in three ecotypes(eco2,eco9,and eco10)exposed to different salinity levels(low,moderate,and severe).The study was conducted using a completely randomized block design with three blocks per ecotype per dose.The results from the two-way analysis of variance demonstrate significant effects across nearly all attributes studied,revealing distinct ecotypic responses.These findings underscore variations in growth parameters,osmotic regulation mechanisms,and biochemical adjustments.The substantial diversity observed among these ecotypes in their response to salinity provides valuable insights for breeders addressing both agronomic and ecological challenges.Multivariate analyses,including Principal Component Analysis(PCA),revealed key variables distinguishing between ecotypes under salinity stress.Moreover,Classification based on Salinity Tolerance Indices(STI)further differentiated ecotypic performance with more precision,and this is because of the combination of the different parameters studied.These results open up new prospects for the development of strategies to improve the salinity tolerance of forage legumes. 展开更多
关键词 salinity tolerance Vicia narbonensis morphological traits physiological adaptations biochemical changes salinity tolerance index(STI)
在线阅读 下载PDF
Patching the cracks of catalyst layer for stable alkaline saline water electrolysis
17
作者 Si-Hua Lin Jin He +2 位作者 Zi-Qi Tian Xiao-Peng Qi Yi-Chao Lin 《Rare Metals》 2025年第9期6760-6770,共11页
Using abundant saline water for electrolysis,rather than limited freshwater,presents a promising technique for generating clean hydrogen energy.However,high concentration of corrosive chloride ions in saline water pos... Using abundant saline water for electrolysis,rather than limited freshwater,presents a promising technique for generating clean hydrogen energy.However,high concentration of corrosive chloride ions in saline water poses a great challenge in the stability of anode.In this study,we present a straightforward strategy to protect the anode from corrosion by patching the catalyst layer through a treatment of the anode with a sodium sulfide(Na2S) solution followed by electrochemical activation.The rapid sulfurization of the Ni electrode in Na2S results in the formation of a Na2S layer,which can subsequently be converted to NiOOH upon electrochemical activation,thereby shielding the inner Ni electrode from corrosion.The as-prepared electrode (P-NiFe-LDH/Ni) based on the strategy demonstrated stability over 3,500 h at an industrial current density of 0.5 A cm^(-2)in a 0.5 M NaCl and 1 M KOH solution.This study presents an effective strategy to significantly enhance the stability of anodes for saline water electrolysis by effectively patching the cracks in the catalyst layer. 展开更多
关键词 NiFe-LDH PATCH Stability saline electrolysis Corrosion
原文传递
Subsurface Temperature and Salinity Structures Inversion Using a Stacking-Based Fusion Model from Satellite Observations in the South China Sea
18
作者 Can LUO Mengya HUANG +3 位作者 Shoude GUAN Wei ZHAO Fengbin TIAN Yuan YANG 《Advances in Atmospheric Sciences》 2025年第1期204-220,共17页
Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are ... Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS. 展开更多
关键词 subsurface temperature and salinity structures clustering algorithms stacking strategy temperature and salinity fusion the South China Sea
在线阅读 下载PDF
Impact of temperature and salinity on fines detachment:AFM measurements and XDLVO theory
19
作者 Wei-Feng Yuan Yu-Long Yang +1 位作者 Lu Yuan Ji-Rui Hou 《Petroleum Science》 2025年第1期338-347,共10页
Fine particle detachment and subsequent migration can lead to severe pore plugging and consequent permeability decline.Therefore,it is crucial to quantify the critical condition when fine particle detachment occurs.Th... Fine particle detachment and subsequent migration can lead to severe pore plugging and consequent permeability decline.Therefore,it is crucial to quantify the critical condition when fine particle detachment occurs.The frequently observed deviations or even contradictions between experimental results and theoretical predictions of fines detachment arise from an insufficient understanding of adhesion force that can be highly influenced by salinity and temperature.To clarify the intrinsic influence of salinity and temperature on fines detachment,adhesion forces between carboxyl microspheres and hydrophilic silica substrates in an aqueous medium were measured at various salinities and tempera-tures using atomic force microscopy(AFM).The AFM-measured adhesion force decreases with increasing salinity or temperature.Trends of mean measured adhesion forces with temperature and salinity were compared with the DLVO and XDLVO theories.DLVO theory captured the trend with temperature via the impact of temperature on electric double layer interactions,whereas XDLVO theory captured the observed trend with salinity via the impact of salinity on the repulsive hydration force.Our results highlight the significance of hydration force in accurately predicting the fate of fines in porous media. 展开更多
关键词 Adhesion force AFM TEMPERATURE salinity XDLVO Hydration force
原文传递
Comparative Analysis of Growth and Survival Among Triploid Oysters from Crassostrea gigas and C.angulata Under Varying Temperature and Salinity Levels
20
作者 FENG Jianxuan JIANG Gaowei +2 位作者 SUN Lingling XU Chengxun LI Qi 《Journal of Ocean University of China》 2025年第6期1747-1760,共14页
Recently,allotriploids from Pacific oysters(Crassostrea gigas)and Fujian oysters(C.angulata)have been grown for aquaculture.However,the viability of these allotriploids remains uncertain.In this study,two autotriploid... Recently,allotriploids from Pacific oysters(Crassostrea gigas)and Fujian oysters(C.angulata)have been grown for aquaculture.However,the viability of these allotriploids remains uncertain.In this study,two autotriploids,TGG(diploid C.gigas♀×tetraploid C.gigas♂)and TAA(diploid C.angulata♀×tetraploid C.angulata♂),and two allotriploids,TGA(diploid C.gigas♀×tetraploid C.angulata♂)and TAG(diploid C.angulata♀×tetraploid C.gigas♂),were studied to assess the heterosis in growth and survival at different temperatures and salinities.The results showed that during the larval stage,TAG exhibited increased heterosis in growth and survival when temperature rose.During the adult stage,the growth of TGA significantly outperformed other triploids at higher temperatures(23 and 28℃)and salinities(25 and 30).In contrast,TAG demonstrated the highest survival probability across all conditions except at salinity 25,where it equaled TAA after day 19.The highest oxygen consumption rates(OCR)of TGA and TAG were observed at 23 and 28℃,while the ammonia excretion rate(AER)of TAG was significantly higher than that of TGA at 23℃.These physiological parameters reflect the advantage of TAG in terms of survival.Notably,the temperature coefficient of allotriploids was higher than that of autotriploids in the range of 18–23℃.At 28℃,TAG showed the highest superoxide dismutase(SOD)and catalase(CAT)activities and the lowest malondialdehyde(MDA)content,showing its advantage when encountering high-temperature. 展开更多
关键词 ALLOTRIPLOID Crassostrea gigas C.angulata temperature salinity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部