A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod...A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet.展开更多
At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of...At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature fusion, and the residual block to obtain finer features. This module provides robust support for the subsequent accurate detection of the salient object. In addition, we use two rounds of feature fusion and the feedback mechanism to optimize the features obtained by the MSFEM to improve detection accuracy. The first round of feature fusion is applied to integrate the features extracted by the MSFEM to obtain more refined features. Subsequently, the feedback mechanism and the second round of feature fusion are applied to refine the features, thereby providing a stronger foundation for accurately detecting salient objects. To improve the fusion effect, we propose the feature enhancement module (FEM) and the feature optimization module (FOM). The FEM integrates the upper and lower features with the optimized features obtained by the FOM to enhance feature complementarity. The FOM uses different receptive fields, the attention mechanism, and the residual block to more effectively capture key information. Experimental results demonstrate that our method outperforms 10 state-of-the-art SOD methods.展开更多
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com...Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet.展开更多
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv...Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.展开更多
A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2...A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.展开更多
The goal of salient object detection is to estimate the regions which are most likely to attract human's visual attention. As an important image preprocessing procedure to reduce the computational complexity, sali...The goal of salient object detection is to estimate the regions which are most likely to attract human's visual attention. As an important image preprocessing procedure to reduce the computational complexity, salient object detection is still a challenging problem in computer vision. In this paper, we proposed a salient object detection model by integrating local and global superpixel contrast at multiple scales. Three features are computed to estimate the saliency of superpixel. Two optimization measures are utilized to refine the resulting saliency map. Extensive experiments with the state-of-the-art saliency models on four public datasets demonstrate the effectiveness of the proposed model.展开更多
The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective s...The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.展开更多
Exploring the interaction between red,green,blue(RGB)and thermal infrared modalities is critical to the success of RGB-thermal(RGB-T)salient object detection(RGB-T SOD).In this paper,a cross-modal attention and reinfo...Exploring the interaction between red,green,blue(RGB)and thermal infrared modalities is critical to the success of RGB-thermal(RGB-T)salient object detection(RGB-T SOD).In this paper,a cross-modal attention and reinforcement network(CAR-Net)was proposed to explore the implicit relationship between the two modalities,which fully leverages the beneficial expression and complementary fusion of the two modalities.Specifically,CAR-Net has a cross-modal attention module(CAM)that enables efficient interaction and key information extraction through joint attention.It also includes a feature strengthener module(FSM)for improved representation using channel rank and loop methods.A large number of experiments show that the CAR-Net achieves the best performance on three publicly available datasets.展开更多
Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from th...Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods.展开更多
Salient object detection remains one of the most important and active research topics in computer vision,with wide-ranging applications to object recognition,scene understanding,image retrieval,context aware image edi...Salient object detection remains one of the most important and active research topics in computer vision,with wide-ranging applications to object recognition,scene understanding,image retrieval,context aware image editing,image compression,etc. Most existing methods directly determine salient objects by exploring various salient object features.Here,we propose a novel graph based ranking method to detect and segment the most salient object in a scene according to its relationship to image border(background) regions,i.e.,the background feature.Firstly,we use regions/super-pixels as graph nodes,which are fully connected to enable both long range and short range relations to be modeled. The relationship of each region to the image border(background) is evaluated in two stages:(i) ranking with hard background queries,and(ii) ranking with soft foreground queries. We experimentally show how this two-stage ranking based salient object detection method is complementary to traditional methods,and that integrated results outperform both. Our method allows the exploitation of intrinsic image structure to achieve high quality salient object determination using a quadratic optimization framework,with a closed form solution which can be easily computed.Extensive method evaluation and comparison using three challenging saliency datasets demonstrate that our method consistently outperforms 10 state-of-theart models by a big margin.展开更多
Salient object detection(SOD)is a long-standing research topic in computer vision with increasing interest in the past decade.Since light fields record comprehensive information of natural scenes that benefit SOD in a...Salient object detection(SOD)is a long-standing research topic in computer vision with increasing interest in the past decade.Since light fields record comprehensive information of natural scenes that benefit SOD in a number of ways,using light field inputs to improve saliency detection over conventional RGB inputs is an emerging trend.This paper provides the first comprehensive review and a benchmark for light field SOD,which has long been lacking in the saliency community.Firstly,we introduce light fields,including theory and data forms,and then review existing studies on light field SOD,covering ten traditional models,seven deep learning-based models,a comparative study,and a brief review.Existing datasets for light field SOD are also summarized.Secondly,we benchmark nine representative light field SOD models together with several cutting-edge RGB-D SOD models on four widely used light field datasets,providing insightful discussions and analyses,including a comparison between light field SOD and RGB-D SOD models.Due to the inconsistency of current datasets,we further generate complete data and supplement focal stacks,depth maps,and multi-view images for them,making them consistent and uniform.Our supplemental data make a universal benchmark possible.Lastly,light field SOD is a specialised problem,because of its diverse data representations and high dependency on acquisition hardware,so it differs greatly from other saliency detection tasks.We provide nine observations on challenges and future directions,and outline several open issues.All the materials including models,datasets,benchmarking results,and supplemented light field datasets are publicly available at https://github.com/kerenfu/LFSOD-Survey.展开更多
Salient object detection is used as a preprocess in many computer vision tasks(such as salient object segmentation,video salient object detection,etc.).When performing salient object detection,depth information can pr...Salient object detection is used as a preprocess in many computer vision tasks(such as salient object segmentation,video salient object detection,etc.).When performing salient object detection,depth information can provide clues to the location of target objects,so effective fusion of RGB and depth feature information is important.In this paper,we propose a new feature information aggregation approach,weighted group integration(WGI),to effectively integrate RGB and depth feature information.We use a dual-branch structure to slice the input RGB image and depth map separately and then merge the results separately by concatenation.As grouped features may lose global information about the target object,we also make use of the idea of residual learning,taking the features captured by the original fusion method as supplementary information to ensure both accuracy and completeness of the fused information.Experiments on five datasets show that our model performs better than typical existing approaches for four evaluation metrics.展开更多
The increasing amount of videos on the Internet and digital libraries highlights the necessity and importance of interactive video services such as automatically associating additional materials(e.g.,advertising logos...The increasing amount of videos on the Internet and digital libraries highlights the necessity and importance of interactive video services such as automatically associating additional materials(e.g.,advertising logos and relevant selling information) with the video content so as to enrich the viewing experience.Toward this end,this paper presents a novel approach for user-targeted video content association(VCA) .In this approach,the salient objects are extracted automatically from the video stream using complementary saliency maps.According to these salient objects,the VCA system can push the related logo images to the users.Since the salient objects often correspond to important video content,the associated images can be considered as content-related.Our VCA system also allows users to associate images to the preferred video content through simple interactions by the mouse and an infrared pen.Moreover,by learning the preference of each user through collecting feedbacks on the pulled or pushed images,the VCA system can provide user-targeted services.Experimental results show that our approach can effectively and efficiently extract the salient objects.Moreover,subjective evaluations show that our system can provide content-related and user-targeted VCA services in a less intrusive way.展开更多
Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applicatio...Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.展开更多
The understanding and analysis of video content are fundamentally important for numerous applications,including video summarization,retrieval,navigation,and editing.An important part of this process is to detect salie...The understanding and analysis of video content are fundamentally important for numerous applications,including video summarization,retrieval,navigation,and editing.An important part of this process is to detect salient (which usually means important and interesting) objects in video segments.Unlike existing approaches,we propose a method that combines the saliency measurement with spatial and temporal coherence.The integration of spatial and temporal coherence is inspired by the focused attention in human vision.In the proposed method,the spatial coherence of low-level visual grouping cues (e.g.appearance and motion) helps per-frame object-background separation,while the temporal coherence of the object properties (e.g.shape and appearance) ensures consistent object localization over time,and thus the method is robust to unexpected environment changes and camera vibrations.Having developed an efficient optimization strategy based on coarse-to-fine multi-scale dynamic programming,we evaluate our method using a challenging dataset that is freely available together with this paper.We show the effectiveness and complementariness of the two types of coherence,and demonstrate that they can significantly improve the performance of salient object detection in videos.展开更多
目的现有360°全景图像显著目标检测方法一定程度上解决了360°全景图像投影后的几何畸变问题,但是这些方法面对复杂场景或是前景与背景对比度较低的场景时,容易受到背景干扰,导致检测效果不佳。为了同时解决几何畸变和背景干扰...目的现有360°全景图像显著目标检测方法一定程度上解决了360°全景图像投影后的几何畸变问题,但是这些方法面对复杂场景或是前景与背景对比度较低的场景时,容易受到背景干扰,导致检测效果不佳。为了同时解决几何畸变和背景干扰,提出一种畸变自适应与位置感知网络(distortion-adaptive and position-aware network,DPNet)。方法提出两个对畸变和位置敏感的自适应检测模块:畸变自适应模块(distortion-adaptive module,DAM)和位置感知模块(position-aware module,PAM)。它们可以帮助模型根据等矩形投影的特点和具体图像决定应该关注图像的哪些区域。在此基础上,进一步提出一个显著信息增强模块(salient information enhancement module,SIEM),该模块用高级特征指导低级特征,过滤其中的非显著信息,防止背景干扰对360°显著目标检测效果的影响。结果实验在2个公开数据集(360-SOD,360-SSOD)上与13种新颖方法进行了客观指标和主观结果的比较,在8个评价指标上的综合性能优于13种对比方法。本文还设置了泛化性实验,采用交叉验证的方式表明了本文模型优秀的泛化性能。结论本文所提出的360°全景图像显著目标检测模型DPNet,同时考虑了360°全景图像投影后的几何畸变问题和复杂场景下的背景干扰问题,能够有效地、完全自适应地检测显著目标。展开更多
基金supported in part by the National Key R&D Program of China(Grant No.2023YFB3307604)the Shanxi Province Basic Research Program Youth Science Research Project(Grant Nos.202303021212054 and 202303021212046)+3 种基金the Key Projects Supported by Hebei Natural Science Foundation(Grant No.E2024203125)the National Science Foundation of China(Grant No.52105391)the Hebei Provincial Science and Technology Major Project(Grant No.23280101Z)the National Key Laboratory of Metal Forming Technology and Heavy Equipment Open Fund(Grant No.S2308100.W17).
文摘A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet.
文摘At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature fusion, and the residual block to obtain finer features. This module provides robust support for the subsequent accurate detection of the salient object. In addition, we use two rounds of feature fusion and the feedback mechanism to optimize the features obtained by the MSFEM to improve detection accuracy. The first round of feature fusion is applied to integrate the features extracted by the MSFEM to obtain more refined features. Subsequently, the feedback mechanism and the second round of feature fusion are applied to refine the features, thereby providing a stronger foundation for accurately detecting salient objects. To improve the fusion effect, we propose the feature enhancement module (FEM) and the feature optimization module (FOM). The FEM integrates the upper and lower features with the optimized features obtained by the FOM to enhance feature complementarity. The FOM uses different receptive fields, the attention mechanism, and the residual block to more effectively capture key information. Experimental results demonstrate that our method outperforms 10 state-of-the-art SOD methods.
基金funded by the Natural Science Foundation China(NSFC)under Grant No.62203192.
文摘Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet.
文摘Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.
文摘A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.
基金the Natural Science Foundation of China(Nos.61602349,61375053,and 61273225)the China Scholarship Council(No.201508420248)Hubei Chengguang Talented Youth Development Foundation(No.2015B22)
文摘The goal of salient object detection is to estimate the regions which are most likely to attract human's visual attention. As an important image preprocessing procedure to reduce the computational complexity, salient object detection is still a challenging problem in computer vision. In this paper, we proposed a salient object detection model by integrating local and global superpixel contrast at multiple scales. Three features are computed to estimate the saliency of superpixel. Two optimization measures are utilized to refine the resulting saliency map. Extensive experiments with the state-of-the-art saliency models on four public datasets demonstrate the effectiveness of the proposed model.
基金supported by the National Natural Science Foundation of China(No.52174021)Key Research and Develop-ment Project of Hainan Province(No.ZDYF2022GXJS 003).
文摘The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.
基金supported by the National Natural Science Foundation of China(62471124)the Heilongjiang Province Natural Science Foundation(LH2022F005)。
文摘Exploring the interaction between red,green,blue(RGB)and thermal infrared modalities is critical to the success of RGB-thermal(RGB-T)salient object detection(RGB-T SOD).In this paper,a cross-modal attention and reinforcement network(CAR-Net)was proposed to explore the implicit relationship between the two modalities,which fully leverages the beneficial expression and complementary fusion of the two modalities.Specifically,CAR-Net has a cross-modal attention module(CAM)that enables efficient interaction and key information extraction through joint attention.It also includes a feature strengthener module(FSM)for improved representation using channel rank and loop methods.A large number of experiments show that the CAR-Net achieves the best performance on three publicly available datasets.
基金supported in part by the CAMS Innovation Fund for Medical Sciences,China(No.2019-I2M5-016)National Natural Science Foundation of China(No.62172246)+1 种基金the Youth Innovation and Technology Support Plan of Colleges and Universities in Shandong Province,China(No.2021KJ062)National Science Foundation of USA(Nos.IIS-1715985 and IIS1812606).
文摘Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods.
基金funded by the National Natural Science Foundation of China under project No.61231014 and No.61572264,respectivelysupported by Defense Advanced Research Projects Agency (No.HR001110-C-0034)+1 种基金the National Science Foundation (No.BCS-0827764)the Army Research Office (No.W911NF-08-1-0360)
文摘Salient object detection remains one of the most important and active research topics in computer vision,with wide-ranging applications to object recognition,scene understanding,image retrieval,context aware image editing,image compression,etc. Most existing methods directly determine salient objects by exploring various salient object features.Here,we propose a novel graph based ranking method to detect and segment the most salient object in a scene according to its relationship to image border(background) regions,i.e.,the background feature.Firstly,we use regions/super-pixels as graph nodes,which are fully connected to enable both long range and short range relations to be modeled. The relationship of each region to the image border(background) is evaluated in two stages:(i) ranking with hard background queries,and(ii) ranking with soft foreground queries. We experimentally show how this two-stage ranking based salient object detection method is complementary to traditional methods,and that integrated results outperform both. Our method allows the exploitation of intrinsic image structure to achieve high quality salient object determination using a quadratic optimization framework,with a closed form solution which can be easily computed.Extensive method evaluation and comparison using three challenging saliency datasets demonstrate that our method consistently outperforms 10 state-of-theart models by a big margin.
基金supported by the National Natural Science Foundation of China(Nos.62176169 and 61703077)SCU-Luzhou Municipal People's Government Strategic Cooperation Projetc(t No.2020CDLZ-10)+1 种基金supported by the National Natural Science Foundation of China(No.62172228)supported by the National Natural Science Foundation of China(No.61773270).
文摘Salient object detection(SOD)is a long-standing research topic in computer vision with increasing interest in the past decade.Since light fields record comprehensive information of natural scenes that benefit SOD in a number of ways,using light field inputs to improve saliency detection over conventional RGB inputs is an emerging trend.This paper provides the first comprehensive review and a benchmark for light field SOD,which has long been lacking in the saliency community.Firstly,we introduce light fields,including theory and data forms,and then review existing studies on light field SOD,covering ten traditional models,seven deep learning-based models,a comparative study,and a brief review.Existing datasets for light field SOD are also summarized.Secondly,we benchmark nine representative light field SOD models together with several cutting-edge RGB-D SOD models on four widely used light field datasets,providing insightful discussions and analyses,including a comparison between light field SOD and RGB-D SOD models.Due to the inconsistency of current datasets,we further generate complete data and supplement focal stacks,depth maps,and multi-view images for them,making them consistent and uniform.Our supplemental data make a universal benchmark possible.Lastly,light field SOD is a specialised problem,because of its diverse data representations and high dependency on acquisition hardware,so it differs greatly from other saliency detection tasks.We provide nine observations on challenges and future directions,and outline several open issues.All the materials including models,datasets,benchmarking results,and supplemented light field datasets are publicly available at https://github.com/kerenfu/LFSOD-Survey.
基金supported by the NEPU Natural Science Foundation under Grants Nos.2017PY ZL05,2018QNL-51,JY CX CX062018,JY CX JG062018,JY CX 142020。
文摘Salient object detection is used as a preprocess in many computer vision tasks(such as salient object segmentation,video salient object detection,etc.).When performing salient object detection,depth information can provide clues to the location of target objects,so effective fusion of RGB and depth feature information is important.In this paper,we propose a new feature information aggregation approach,weighted group integration(WGI),to effectively integrate RGB and depth feature information.We use a dual-branch structure to slice the input RGB image and depth map separately and then merge the results separately by concatenation.As grouped features may lose global information about the target object,we also make use of the idea of residual learning,taking the features captured by the original fusion method as supplementary information to ensure both accuracy and completeness of the fused information.Experiments on five datasets show that our model performs better than typical existing approaches for four evaluation metrics.
基金Project supported by the CADAL Project and the National Natural Science Foundation of China(Nos.60973055 and 90820003)
文摘The increasing amount of videos on the Internet and digital libraries highlights the necessity and importance of interactive video services such as automatically associating additional materials(e.g.,advertising logos and relevant selling information) with the video content so as to enrich the viewing experience.Toward this end,this paper presents a novel approach for user-targeted video content association(VCA) .In this approach,the salient objects are extracted automatically from the video stream using complementary saliency maps.According to these salient objects,the VCA system can push the related logo images to the users.Since the salient objects often correspond to important video content,the associated images can be considered as content-related.Our VCA system also allows users to associate images to the preferred video content through simple interactions by the mouse and an infrared pen.Moreover,by learning the preference of each user through collecting feedbacks on the pulled or pushed images,the VCA system can provide user-targeted services.Experimental results show that our approach can effectively and efficiently extract the salient objects.Moreover,subjective evaluations show that our system can provide content-related and user-targeted VCA services in a less intrusive way.
文摘Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.
基金supported by the National Natural Science Foundation of China(60635050 and 90820017)the National Basic Research Program of China(2007CB311005)
文摘The understanding and analysis of video content are fundamentally important for numerous applications,including video summarization,retrieval,navigation,and editing.An important part of this process is to detect salient (which usually means important and interesting) objects in video segments.Unlike existing approaches,we propose a method that combines the saliency measurement with spatial and temporal coherence.The integration of spatial and temporal coherence is inspired by the focused attention in human vision.In the proposed method,the spatial coherence of low-level visual grouping cues (e.g.appearance and motion) helps per-frame object-background separation,while the temporal coherence of the object properties (e.g.shape and appearance) ensures consistent object localization over time,and thus the method is robust to unexpected environment changes and camera vibrations.Having developed an efficient optimization strategy based on coarse-to-fine multi-scale dynamic programming,we evaluate our method using a challenging dataset that is freely available together with this paper.We show the effectiveness and complementariness of the two types of coherence,and demonstrate that they can significantly improve the performance of salient object detection in videos.
文摘目的现有360°全景图像显著目标检测方法一定程度上解决了360°全景图像投影后的几何畸变问题,但是这些方法面对复杂场景或是前景与背景对比度较低的场景时,容易受到背景干扰,导致检测效果不佳。为了同时解决几何畸变和背景干扰,提出一种畸变自适应与位置感知网络(distortion-adaptive and position-aware network,DPNet)。方法提出两个对畸变和位置敏感的自适应检测模块:畸变自适应模块(distortion-adaptive module,DAM)和位置感知模块(position-aware module,PAM)。它们可以帮助模型根据等矩形投影的特点和具体图像决定应该关注图像的哪些区域。在此基础上,进一步提出一个显著信息增强模块(salient information enhancement module,SIEM),该模块用高级特征指导低级特征,过滤其中的非显著信息,防止背景干扰对360°显著目标检测效果的影响。结果实验在2个公开数据集(360-SOD,360-SSOD)上与13种新颖方法进行了客观指标和主观结果的比较,在8个评价指标上的综合性能优于13种对比方法。本文还设置了泛化性实验,采用交叉验证的方式表明了本文模型优秀的泛化性能。结论本文所提出的360°全景图像显著目标检测模型DPNet,同时考虑了360°全景图像投影后的几何畸变问题和复杂场景下的背景干扰问题,能够有效地、完全自适应地检测显著目标。