期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
电力企业扩建办设备管理信息系统SBMIS设计与实现 被引量:2
1
作者 徐宝民 张丽清 刘永清 《计算机工程与应用》 CSCD 北大核心 1998年第11期60-62,共3页
该文在对湛江电厂扩建办设备管理需求情况调研的基础上,按软件工程开发的原理和方法对系统按功能进行了详细划分,并在详细设计的基础上利用图形界面功能丰富的VISUALFOXPRO3.0在Win95平台上开发了本系统。
关键词 电力企业 设备管理 管理信息系统 sbmiS
在线阅读 下载PDF
排放污染物申报登记软件功能分析及其应用
2
作者 缪飞 《福建环境》 2000年第4期3-5,共3页
通过对SBMIS软件功能分析及实际应用介绍,促进软件应用,为环境管理提供信息支持。
关键词 申报登记软件 功能分析 排放污染物 sbmiS
在线阅读 下载PDF
Global Optimization for Heilbronn Problem of Convex Polygons Based on Bilinear Matrix Inequalities Solving
3
作者 QI Niuniu DEHBI Lydia +2 位作者 LIU Banglong YANG Zhengfeng ZENG Zhenbing 《Journal of Systems Science & Complexity》 2025年第5期2252-2271,共20页
This paper primarily focuses on solving the Heilbronn problem of convex polygons,which involves minimizing the area of a convex polygon P_(1)P_(2)···P_(n) while satisfying the condition that the areas o... This paper primarily focuses on solving the Heilbronn problem of convex polygons,which involves minimizing the area of a convex polygon P_(1)P_(2)···P_(n) while satisfying the condition that the areas of all triangles formed by consecutive vertices are equal to 1/2.The problem is reformulated as a polynomial optimization problem with a bilinear objective function and bilinear constraints.A new method is presented to verify the upper and lower bounds for the optimization problem.The upper bound is obtained by the affine regular decagon.Then Bilinear Matrix Inequalities(BMI)theory and the branch-and-bound technique are used to verify the lower bound of the problem.The paper concludes by proving that the lower bound for the area minimization problem of a convex polygon with 10 vertices is 13.076548.The relative error compared to the global optimum is 0.104%. 展开更多
关键词 sbmi convex polygon global optimization heilbronn problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部