Let (L, ,0, 1) be an effect algebra and let X be a Banach space. A function : L→ X is called a vector measure if μ(a b) =μ(a) + μ(b) whenever a⊥b in L. The function μ is said to be 8-bounded if limn...Let (L, ,0, 1) be an effect algebra and let X be a Banach space. A function : L→ X is called a vector measure if μ(a b) =μ(a) + μ(b) whenever a⊥b in L. The function μ is said to be 8-bounded if limn→∞μ(an) = 0 in X for any orthogonal sequence (an)n∈N in L. In this paper, we introduce two properties of sequence of s-bounded vector measures and give some results on these properties.展开更多
This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt...This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt)/t , z ∈ B, g ∈ H(B) and φ∈H(B, B).展开更多
文摘Let (L, ,0, 1) be an effect algebra and let X be a Banach space. A function : L→ X is called a vector measure if μ(a b) =μ(a) + μ(b) whenever a⊥b in L. The function μ is said to be 8-bounded if limn→∞μ(an) = 0 in X for any orthogonal sequence (an)n∈N in L. In this paper, we introduce two properties of sequence of s-bounded vector measures and give some results on these properties.
基金Supported by the NNSF of China(10771064, 11101139)Supported by the NSF of Zhejiang Province(Y7080197, Y6090036, Y6100219)Supported by the Foundation of Creative Group in Colleges and Universities of Zhejiang Province(T200924)
文摘This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt)/t , z ∈ B, g ∈ H(B) and φ∈H(B, B).