The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor ...The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.展开更多
研究了单个线性关系是可闭线性关系的充分必要条件;并对L0=(A B C D),其中A,B,C,D是相应Hilbert空间上的线性关系,利用C相对A的有界性与B相对D的有界性及A,D的可闭性,推出了L_(0)也是可闭线性关系;同时,对于有界线性算子S=(S_(1) S_(2) ...研究了单个线性关系是可闭线性关系的充分必要条件;并对L0=(A B C D),其中A,B,C,D是相应Hilbert空间上的线性关系,利用C相对A的有界性与B相对D的有界性及A,D的可闭性,推出了L_(0)也是可闭线性关系;同时,对于有界线性算子S=(S_(1) S_(2) S_(3) S_(4)),得到当满足一定条件时L_(0)-μS的Frobenius-Schur分解公式,并得到了当L_(0)可闭时L_(0)的表达式,最后研究了L_(0)的S-本质谱。展开更多
文摘The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.
文摘研究了单个线性关系是可闭线性关系的充分必要条件;并对L0=(A B C D),其中A,B,C,D是相应Hilbert空间上的线性关系,利用C相对A的有界性与B相对D的有界性及A,D的可闭性,推出了L_(0)也是可闭线性关系;同时,对于有界线性算子S=(S_(1) S_(2) S_(3) S_(4)),得到当满足一定条件时L_(0)-μS的Frobenius-Schur分解公式,并得到了当L_(0)可闭时L_(0)的表达式,最后研究了L_(0)的S-本质谱。