Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service lif...Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service life,and high reliability.However,in practical design processes,topology optimization must not only account for the static performance of structures but also consider the impacts of various responses and uncertainties under complex dynamic conditions,which traditional methods often struggle accommodate.Therefore,this study proposes an RBTO framework based on a Kriging-assisted level set function and a novel Dynamic Hybrid Particle Swarm Optimization(DHPSO)algorithm.By leveraging the Kriging model as a surrogate,the high cost associated with repeatedly running finite element analysis processes is reduced,addressing the issue of minimizing structural compliance.Meanwhile,the DHPSO algorithm enables a better balance between the population’s developmental and exploratory capabilities,significantly accelerating convergence speed and enhancing global convergence performance.Finally,the proposed method is validated through three different structural examples,demonstrating its superior performance.Observed that the computational that,compared to the traditional Solid Isotropic Material with Penalization(SIMP)method,the proposed approach reduces the upper bound of structural compliance by approximately 30%.Additionally,the optimized results exhibit clear material interfaces without grayscale elements,and the stress concentration factor is reduced by approximately 42%.Consequently,the computational results fromdifferent examples verify the effectiveness and superiority of this study across various fields,achieving the goal of providing more precise optimization results within a shorter timeframe.展开更多
In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants ...In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants in energy trading.Firstly,the energy trading process is analyzed between each subject based on the establishment of the operation framework of multi-agent participation in energy trading.Secondly,the optimal operation model of each energy trading agent is established to develop a bi-level game model including each energy participant.Finally,a combination algorithm of improved robust optimization over time(ROOT)and CPLEX is proposed to solve the established game model.The experimental results indicate that under different fitness thresholds,the robust optimization results of the proposed algorithm are increased by 56.91%and 68.54%,respectively.The established bi-level game model effectively balances the benefits of different energy trading entities.The proposed algorithm proposed can increase the income of each participant in the game by an average of 8.59%.展开更多
The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous flui...The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous fluid density distributions over time.It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems.The Sunway Bluelight II supercomputer,as a new generation of China’s developed supercomputer,possesses powerful computational capabilities.Porting and optimizing industrial software on this platform holds significant importance.For the optimization of the DDFT algorithm,based on the Sunway Bluelight II supercomputer and the unique hardware architecture of the SW39000 processor,this work proposes three acceleration strategies to enhance computational efficiency and performance,including direct parallel optimization,local-memory constrained optimization for CPEs,and multi-core groups collaboration and communication optimization.This method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway Bluelight II supercomputer,optimizing the storage and transmission structures to achieve a closer integration of software and hardware.For the first time,this paper presents Sunway-Dynamical Density Functional Theory(SW-DDFT).Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group compared to the original DDFT implementation,with six core groups(a total of 384 CPEs),the maximum speedup can reach 28.64 times,and parallel efficiency can reach 71%,demonstrating excellent acceleration performance.展开更多
Double-shaft-driven needle punching machine is a specialized equipment designed for processing C/C crucible preforms.Its main needle punching module is operated by two sets of reciprocating crank-slider mechanisms.The...Double-shaft-driven needle punching machine is a specialized equipment designed for processing C/C crucible preforms.Its main needle punching module is operated by two sets of reciprocating crank-slider mechanisms.The intense vibration during needle punching not only generates huge noise,but also substantially reduces the quality of the preform.It is imperative to perform a dynamic analysis and optimization of the entire needle punching machine.In this paper,the three-dimensional(3D)model of the entire double-shaft-driven needle punching machine for C/C crucible preforms is established.Based on the modal analysis theory,the modal characteristics of the needle punching machine under various operating conditions are analyzed and its natural frequencies and vibration modes are determined.The harmonic response analysis is then employed to obtain the amplitude of the needle plate at different frequencies,and the structural weak points of the needle punching machine are identified and improved.The feasibility of the optimized scheme is subsequently reevaluated and verified.The results indicate that the first six natural frequencies of the machine increase,and the maximum amplitude of the needle plate decreases by 70.3%.The enhanced dynamic characteristics of the machine significantly improve its performance,enabling more efficient needle punching of C/C crucible preforms.展开更多
Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the ...Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the analysis of the web pillar-overburden system’s dynamic stress and deformation,a total potential energy function and dynamic failure criterion were established for web pillars.An optimizing method for web pillar parameters was developed in highwall mining.The dynamic criterion established was used to evaluate the dynamic failure and stability of web pillars under static and dynamic loading.Key findings reveal that vertical displacements exhibit exponential-trigonometric variation under static loads and multi-variable power-law behavior under dynamic blasting.Instability risks arise when the roof’s tensile strength-to-stress ratio drops below 1.Using catastrophe theory,the bifurcation setΔ<0 signals sudden instability.The criterion defines failure as when the unstable web pillar section length l1 exceeds the roof’s critical collapse distance l2.Case studies and simulations determine an optimal web pillar width of 4.6 m.This research enhances safety and resource recovery,providing a theoretical framework for advancing highwall mining technology.展开更多
Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of r...Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of risk and return.When long-term data series are unavailable for analysis,it has become common practice to use recent data only.The danger is that these data may not be representative of future performance.Although longer data series are of poorer quality,are difficult to obtain,and may reflect various political and economic regimes,they often paint a very different picture of emerging market performance.This paper presents an application of a stochastic non-linear optimization model of portfolios including transaction costs in the Brazilian financial market.In order to have that,portfolio theory and optimal control were used as theoretical basis.The first strategy tries to allocate the whole available wealth,not considering the risk associated to portfolio(deterministic result).In this case the investor obtained profits of 7.23%a month,taking into account the three risk aversion levels during the whole planning period.On the contrary,the results from the stochastic algorithm obtain profits of 1.34%a month and 18.06%a year,if the investor has low risk aversion.The profits would be 0.88%a month and 11.02%a year for a medium risk aversion investor.And with high risk aversion,the investor obtains 0.62%a month and 7.68%a year.展开更多
The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicle...The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.展开更多
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s...Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,re...The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.展开更多
Aiming at the environment such as ravines and obstacles that may be encountered in the actual movement,this paper proposes a method for optimizing the bounding and jumping motion based on the ground touching force tra...Aiming at the environment such as ravines and obstacles that may be encountered in the actual movement,this paper proposes a method for optimizing the bounding and jumping motion based on the ground touching force trajectory and the air motion trajectory of the quadruped robot.The method of optimizing the ground reaction force according to the speed of the demand and the height of the jump,and adjusting the stance and swing time according to the relationship of dynamics and momentum conservation.At the same time,under the constraints of dynamics and energy consumption of the robot system,considering the jumping distance and height,a method for optimizing the air trajectory of bounding and jumping is proposed.State switching and landing stability control are also added.Finally,the experimental results show that the quadruped robot has strong bounding and jumping ability,and has achieved stable bounding movement and forward jump movement of 0.8 m.展开更多
Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours ...Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.展开更多
The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimizati...The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimization problem.Currently,a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking.Therefore,this study proposes a novel structural design scheme for BPUs,aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs.A dynamic model of compound balanced BPU was established based on D'Alembert's principle.The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs.To optimize the structure,three algorithms were employed:the particle swarm optimization(PSO)algorithm,the genetic algorithm(GA),and the gray wolf optimization(GWO)algorithm.Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes.Furthermore,the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution.The polished rod acceleration of the optimized structure is significantly reduced,and the dynamic characteristics of the up and down strokes are essentially symmetrical.Additionally,these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card.The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU,as well as in balance optimization by achieving energy conservation.By applying the optimization scheme proposed in this paper,the CYJW7-3-23HF type of BPU was designed,achieving a maximum polished rod acceleration of±0.675 m/s^(2) when operating at a stroke of 6 min^(−1).When deployed in two wells,the root-mean-square(RMS)torque was minimized,reaching values of 7.539 kN·m and 12.921 kN·m,respectively.The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs.展开更多
Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soar...Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference.展开更多
To reduce the vibration of the Coaxial Helicopter Main Transmission System(CHMTS)considering both level and vertical flight conditions,a vibration evaluation and optimization model for the CHMTS was built.The vibratio...To reduce the vibration of the Coaxial Helicopter Main Transmission System(CHMTS)considering both level and vertical flight conditions,a vibration evaluation and optimization model for the CHMTS was built.The vibration simulation model of the CHMTS was set up by gear dynamics theory and loaded contact analysis.For better evaluation of the system vibration,a vibration evaluation method for the CHMTS was established by the G1 method-variation coefficient method.A hybrid Gravitational Search Algorithm-Simulated Annealing(GSA-SA)algorithm was combined to balance convergence speed and searching accuracy.The principle test was conducted to prove the accuracy of theoretical method,in which the maximum relative error is16.26%.The optional results show that the vibration of the optimized transmission system decreases significantly,in which the maximum reduction of key vibration indicators reaches more than 20%.The theoretical results have been compared to the experiment to verify the effectiveness of the vibration optimization method.The proposed method could be extended to other fields.展开更多
Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we pr...Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.展开更多
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in...Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.展开更多
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金fundings supported by Sichuan Science and Technology Program(2025YFHZ0065).
文摘Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service life,and high reliability.However,in practical design processes,topology optimization must not only account for the static performance of structures but also consider the impacts of various responses and uncertainties under complex dynamic conditions,which traditional methods often struggle accommodate.Therefore,this study proposes an RBTO framework based on a Kriging-assisted level set function and a novel Dynamic Hybrid Particle Swarm Optimization(DHPSO)algorithm.By leveraging the Kriging model as a surrogate,the high cost associated with repeatedly running finite element analysis processes is reduced,addressing the issue of minimizing structural compliance.Meanwhile,the DHPSO algorithm enables a better balance between the population’s developmental and exploratory capabilities,significantly accelerating convergence speed and enhancing global convergence performance.Finally,the proposed method is validated through three different structural examples,demonstrating its superior performance.Observed that the computational that,compared to the traditional Solid Isotropic Material with Penalization(SIMP)method,the proposed approach reduces the upper bound of structural compliance by approximately 30%.Additionally,the optimized results exhibit clear material interfaces without grayscale elements,and the stress concentration factor is reduced by approximately 42%.Consequently,the computational results fromdifferent examples verify the effectiveness and superiority of this study across various fields,achieving the goal of providing more precise optimization results within a shorter timeframe.
基金supported by the National Nature Science Foundation of China(Nos.62063019)Natural Science Foundation of Gansu Province(22JR5RA241,2023CXZX-465).
文摘In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants in energy trading.Firstly,the energy trading process is analyzed between each subject based on the establishment of the operation framework of multi-agent participation in energy trading.Secondly,the optimal operation model of each energy trading agent is established to develop a bi-level game model including each energy participant.Finally,a combination algorithm of improved robust optimization over time(ROOT)and CPLEX is proposed to solve the established game model.The experimental results indicate that under different fitness thresholds,the robust optimization results of the proposed algorithm are increased by 56.91%and 68.54%,respectively.The established bi-level game model effectively balances the benefits of different energy trading entities.The proposed algorithm proposed can increase the income of each participant in the game by an average of 8.59%.
基金supported by National Key Research and Development Program of China under Grant 2024YFE0210800National Natural Science Foundation of China under Grant 62495062Beijing Natural Science Foundation under Grant L242017.
文摘The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous fluid density distributions over time.It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems.The Sunway Bluelight II supercomputer,as a new generation of China’s developed supercomputer,possesses powerful computational capabilities.Porting and optimizing industrial software on this platform holds significant importance.For the optimization of the DDFT algorithm,based on the Sunway Bluelight II supercomputer and the unique hardware architecture of the SW39000 processor,this work proposes three acceleration strategies to enhance computational efficiency and performance,including direct parallel optimization,local-memory constrained optimization for CPEs,and multi-core groups collaboration and communication optimization.This method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway Bluelight II supercomputer,optimizing the storage and transmission structures to achieve a closer integration of software and hardware.For the first time,this paper presents Sunway-Dynamical Density Functional Theory(SW-DDFT).Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group compared to the original DDFT implementation,with six core groups(a total of 384 CPEs),the maximum speedup can reach 28.64 times,and parallel efficiency can reach 71%,demonstrating excellent acceleration performance.
基金Open Project of Shanghai Key Laboratory of Lightweight Composite,China(No.2232021A4-04)。
文摘Double-shaft-driven needle punching machine is a specialized equipment designed for processing C/C crucible preforms.Its main needle punching module is operated by two sets of reciprocating crank-slider mechanisms.The intense vibration during needle punching not only generates huge noise,but also substantially reduces the quality of the preform.It is imperative to perform a dynamic analysis and optimization of the entire needle punching machine.In this paper,the three-dimensional(3D)model of the entire double-shaft-driven needle punching machine for C/C crucible preforms is established.Based on the modal analysis theory,the modal characteristics of the needle punching machine under various operating conditions are analyzed and its natural frequencies and vibration modes are determined.The harmonic response analysis is then employed to obtain the amplitude of the needle plate at different frequencies,and the structural weak points of the needle punching machine are identified and improved.The feasibility of the optimized scheme is subsequently reevaluated and verified.The results indicate that the first six natural frequencies of the machine increase,and the maximum amplitude of the needle plate decreases by 70.3%.The enhanced dynamic characteristics of the machine significantly improve its performance,enabling more efficient needle punching of C/C crucible preforms.
基金supported by the National Natural Science Foundation of China(Nos.52204136,52474100,and 52204092).
文摘Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the analysis of the web pillar-overburden system’s dynamic stress and deformation,a total potential energy function and dynamic failure criterion were established for web pillars.An optimizing method for web pillar parameters was developed in highwall mining.The dynamic criterion established was used to evaluate the dynamic failure and stability of web pillars under static and dynamic loading.Key findings reveal that vertical displacements exhibit exponential-trigonometric variation under static loads and multi-variable power-law behavior under dynamic blasting.Instability risks arise when the roof’s tensile strength-to-stress ratio drops below 1.Using catastrophe theory,the bifurcation setΔ<0 signals sudden instability.The criterion defines failure as when the unstable web pillar section length l1 exceeds the roof’s critical collapse distance l2.Case studies and simulations determine an optimal web pillar width of 4.6 m.This research enhances safety and resource recovery,providing a theoretical framework for advancing highwall mining technology.
文摘Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of risk and return.When long-term data series are unavailable for analysis,it has become common practice to use recent data only.The danger is that these data may not be representative of future performance.Although longer data series are of poorer quality,are difficult to obtain,and may reflect various political and economic regimes,they often paint a very different picture of emerging market performance.This paper presents an application of a stochastic non-linear optimization model of portfolios including transaction costs in the Brazilian financial market.In order to have that,portfolio theory and optimal control were used as theoretical basis.The first strategy tries to allocate the whole available wealth,not considering the risk associated to portfolio(deterministic result).In this case the investor obtained profits of 7.23%a month,taking into account the three risk aversion levels during the whole planning period.On the contrary,the results from the stochastic algorithm obtain profits of 1.34%a month and 18.06%a year,if the investor has low risk aversion.The profits would be 0.88%a month and 11.02%a year for a medium risk aversion investor.And with high risk aversion,the investor obtains 0.62%a month and 7.68%a year.
基金funded by the“Hundred Outstanding Talents”Support Program of Jining University,a provincial-level key project in the field of natural sciences,grant number 2023ZYRC23Jining Key R&D Program(Soft Science)Project,No.2024JNZC010Shandong Province Key Research and Development Program(Technology-Based Small and Medium-sized Enterprises Innovation Capability Improvement)Project No.2025TSGCCZZB0679.
文摘The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.
基金funded by the National Natural Science Foundation of China Youth Fund(Grant No.62304022)Science and Technology on Electromechanical Dynamic Control Laboratory(China,Grant No.6142601012304)the 2022e2024 China Association for Science and Technology Innovation Integration Association Youth Talent Support Project(Grant No.2022QNRC001).
文摘Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
文摘The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.
基金supported by the National Key Research Program of China 2018AAA0100103.
文摘Aiming at the environment such as ravines and obstacles that may be encountered in the actual movement,this paper proposes a method for optimizing the bounding and jumping motion based on the ground touching force trajectory and the air motion trajectory of the quadruped robot.The method of optimizing the ground reaction force according to the speed of the demand and the height of the jump,and adjusting the stance and swing time according to the relationship of dynamics and momentum conservation.At the same time,under the constraints of dynamics and energy consumption of the robot system,considering the jumping distance and height,a method for optimizing the air trajectory of bounding and jumping is proposed.State switching and landing stability control are also added.Finally,the experimental results show that the quadruped robot has strong bounding and jumping ability,and has achieved stable bounding movement and forward jump movement of 0.8 m.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.
基金supported by the Key Laboratory of Petroleum and Natural Gas Equipment,Ministry of Education(No.OGE202303-08)Engineering Technology Research Center for Industrial Internet of Things and Intelligent Sensing,Hubei Province(No.KXZ 202203).
文摘The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimization problem.Currently,a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking.Therefore,this study proposes a novel structural design scheme for BPUs,aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs.A dynamic model of compound balanced BPU was established based on D'Alembert's principle.The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs.To optimize the structure,three algorithms were employed:the particle swarm optimization(PSO)algorithm,the genetic algorithm(GA),and the gray wolf optimization(GWO)algorithm.Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes.Furthermore,the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution.The polished rod acceleration of the optimized structure is significantly reduced,and the dynamic characteristics of the up and down strokes are essentially symmetrical.Additionally,these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card.The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU,as well as in balance optimization by achieving energy conservation.By applying the optimization scheme proposed in this paper,the CYJW7-3-23HF type of BPU was designed,achieving a maximum polished rod acceleration of±0.675 m/s^(2) when operating at a stroke of 6 min^(−1).When deployed in two wells,the root-mean-square(RMS)torque was minimized,reaching values of 7.539 kN·m and 12.921 kN·m,respectively.The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs.
基金support received by the National Natural Science Foundation of China(Grant Nos.52372398&62003272).
文摘Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference.
基金funded by the National Natural Science Foundation of China(No.52105060)the Special Transmission Project,China(No.KY-1044-2023-0458)。
文摘To reduce the vibration of the Coaxial Helicopter Main Transmission System(CHMTS)considering both level and vertical flight conditions,a vibration evaluation and optimization model for the CHMTS was built.The vibration simulation model of the CHMTS was set up by gear dynamics theory and loaded contact analysis.For better evaluation of the system vibration,a vibration evaluation method for the CHMTS was established by the G1 method-variation coefficient method.A hybrid Gravitational Search Algorithm-Simulated Annealing(GSA-SA)algorithm was combined to balance convergence speed and searching accuracy.The principle test was conducted to prove the accuracy of theoretical method,in which the maximum relative error is16.26%.The optional results show that the vibration of the optimized transmission system decreases significantly,in which the maximum reduction of key vibration indicators reaches more than 20%.The theoretical results have been compared to the experiment to verify the effectiveness of the vibration optimization method.The proposed method could be extended to other fields.
基金supported in part by the National Key Research and Development Program of China(2024YFB4709100,2021YFE0206100)the National Natural Science Foundation of China(62073321)+1 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029)the Science and Technology Development Fund,Macao SAR,China(0015/2020/AMJ)
文摘Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.
基金supported by the National Key Research and Development Program Project(No.2021YFB3301300).
文摘Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.