The vortex dynamics after the initial ring dark solitons in two-component ultracold Rydberg atomic systems have been investigated.The two parameters characterizing the Rydberg long-range interaction—namely,the Rydber...The vortex dynamics after the initial ring dark solitons in two-component ultracold Rydberg atomic systems have been investigated.The two parameters characterizing the Rydberg long-range interaction—namely,the Rydberg strength and the blockade radius—along with the initial depth,are identified as the main factors that affect the vortex dynamics.In the absence of Rydberg soft-core potential and spin-orbit coupling,the late vortex dipoles move along x-or y-axis first.However,this work demonstrates that,with certain Rydberg strength and blockade radius,the late vortex dipoles move towards the edge at an oblique angle to the coordinate axes,and it reveals that the Rydberg nonlocal nonlinear interaction shortens the lifetime of late vortices.When the intra-component and inter-component Rydberg strengths are different,the backgrounds of the two components gradually complement each other,and the lifetime of late vortices is significantly shortened.The presented results show that the Rydberg dressing breaks the rule that the initial average depth determines the number and paths of vortices.The motion features of vortex dipoles in the ultracold Rydberg atomic system have been ascertained,and their directions of movement can be predicted to some degree based on the rotation directions and initial positions of the vortices.展开更多
Recently, the rapid progress of quantum sensing research reveals that Rydberg atoms have great potential in becoming high-precision centimeter-scale antennas for low-frequency fields. In order to facilitate efficient ...Recently, the rapid progress of quantum sensing research reveals that Rydberg atoms have great potential in becoming high-precision centimeter-scale antennas for low-frequency fields. In order to facilitate efficient and reliable detection of low-frequency fields via Rydberg atoms, we designed and implemented a heterodyne method based on the linear response to external signals under the condition of Rydberg electromagnetically induced transparency(EIT). Instead of relying on observing changes in the absorption of light by Rydberg atoms, our method focuses on the phase modulation effect on the probe laser induced by low-frequency fields via the Rydberg EIT mechanism and utilizes a special demodulation process to accurately retrieve signals including both amplitude and phase. The general principles of our method apply to both electric and magnetic fields, and it is even possible to realize a combination of both functionalities in the same apparatus. In particular, we experimentally demonstrate the full cycle of operations with respect to both cases. In measuring low-frequency electric fields,we discover that the Rydberg dipole–dipole interaction among atoms induces a linear superposition of Rydberg states with different angular momentum, generating a first-order response corresponding to the signature of the linear Stark effect. As Rydberg atoms have excellent coupling strengths with electric fields, our results indicate that our method can hopefully achieve high-precision performance for practical tasks in the future.展开更多
This letter demonstrates an experimental approach to measuring the angular-momentum-resolved population of excited states in laser-produced argon ions.By measuring the spectra of free induction decay emissions corresp...This letter demonstrates an experimental approach to measuring the angular-momentum-resolved population of excited states in laser-produced argon ions.By measuring the spectra of free induction decay emissions corresponding to the resonant transitions between Rydberg states,the relative population of the Rydberg states is obtained with known Einstein A-coefficients.This study deepens the mechanistic understanding of coherent dynamics in laser-driven ionic excited states,and establishes experimental benchmarks essential for validating and refining advanced quantum kinetic models in strong-field physics.展开更多
The ultrafast excitation dynamics of atoms and molecules exposed to circularly polarized two-color(CPTC)laser fields constitute a fascinating topic in attosecond science. Although extensive research has established th...The ultrafast excitation dynamics of atoms and molecules exposed to circularly polarized two-color(CPTC)laser fields constitute a fascinating topic in attosecond science. Although extensive research has established the relationship between the Rydberg state excitation(RSE) yields and the CPTC field parameters, such as field amplitude ratios and helicity of two components, the role of the relative phase(φ) in modulating RSE efficiency remains unclear. In this work, we theoretically investigate the φ dependence of RSE and ionization yields in the co-rotating and counter-rotating circularly polarized two-color(CPTC) few-cycle laser fields by a semiclassical model. We find that, in co-rotating CPTC fields, both RSE and ionization yields display pronounced oscillations as a function of φ and these oscillations are significantly suppressed in the counter-rotating configuration, particularly for ionization yields. Moreover, the ratio of RSE to ionization yields exhibits an out-of-phase oscillatory pattern between low-and high-intensity regimes. These results can be comprehended by the unique feature of φ dependence of CPTC few-cycle fields, based on our semiclassical analysis. Our results demonstrate that phase-controlled CPTC fields offer a versatile tool for steering ultrafast ionization and RSE dynamics of atoms and molecules.展开更多
Developing microwave electric field sensing based on Rydberg atoms has received significant attention due to its unique advantages. However, achieving effective coupling between Rydberg atoms and the microwave electri...Developing microwave electric field sensing based on Rydberg atoms has received significant attention due to its unique advantages. However, achieving effective coupling between Rydberg atoms and the microwave electric field in the sensing process is a challenging problem that greatly impacts the sensitivity. To address this, we propose using a microwave resonant cavity to enhance the effective coupling between the Rydberg atoms and the microwave electric field. In our experiment, Rydberg atoms are prepared via a three-photon excitation scheme, and the electric fields are measured without and with a microwave cavity in which the vapor cell is placed inside, respectively. As a result, we achieved an 18 dB enhancement of power sensitivity by adding the cavity,which is an effective enhancement in electric field pulse signal detection. This experimental testing provides a promising direction for enhancing the sensitivity of Rydberg atomic electric field sensors and paves the way for their application in precision electric field measurements.展开更多
There is a growing interest in the rapid assessment of terahertz(THz)spectroscopy owing to its promising application pros-pects in nondestructive testing,security screening,and communication.In this study,we introduce...There is a growing interest in the rapid assessment of terahertz(THz)spectroscopy owing to its promising application pros-pects in nondestructive testing,security screening,and communication.In this study,we introduce a swift characterization method for THz spectroscopy that utilizes a THz-to-optical conversion system in a warm atomic vapor cell.By subtracting the photoluminescence(PL)spectra of cesium atoms with the THz field from those without the THz field,we obtained differential PL spectra that effectively characterized the 0.548 THz field.The differential PL spectra of Rydberg atoms offer the opportunity to quantify the THz field’s intensity and frequency,potentially paving the way for the development of THz spectroscopy based on warm atomic vapor cells.展开更多
Conversion between different types of entangled states is an interesting problem in quantum mechanics.But research on the conversion between the Greenberger-Horne-Zeilinger(GHZ)state and Knill-Laflamme-Milburn(KLM)sta...Conversion between different types of entangled states is an interesting problem in quantum mechanics.But research on the conversion between the Greenberger-Horne-Zeilinger(GHZ)state and Knill-Laflamme-Milburn(KLM)state in an atomic system has not been reported.In this paper,we propose a scheme to realize the interconversion(one-step)between the GHZ state and KLM state with Rydberg atoms.By utilizing Rydberg-mediated interactions,we simplify the system.By combining a Lie-transform-based pulse design,the evolution path is built up to realize interconversion of the GHZ state and KLM state.The numerical simulation result shows that the present scheme is robust against decoherence and operational imperfection.展开更多
We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator(LO)microwave field strength.By employing parallel and perpendicular align...We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator(LO)microwave field strength.By employing parallel and perpendicular alignments of laser and microwave polarizations in our experimental setup,we study the Autler-Townes(AT)splitting spectrum and optical response of probe transmission,and analyze their sensing effects.The results show that the parallel polarization configuration offers higher gain and better sensitivity than the perpendicular configuration.We achieve a sensitivity of 4.150(69)nV·cm^(-1)·Hz^(-1/2)at an LO microwave field strength of 1.74 mV/cm.This work demonstrates the significant role of polarization alignment on the performance of Rydberg atom-based microwave sensors.展开更多
The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches...The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.展开更多
The anisotropic Dicke model offers a platform for the exploration of numerous quantum many-body phenomena.Here,we propose a Floquet-engineered scheme to realize such a system with strong dipole-dipole interactions usi...The anisotropic Dicke model offers a platform for the exploration of numerous quantum many-body phenomena.Here,we propose a Floquet-engineered scheme to realize such a system with strong dipole-dipole interactions using Rydberg atom arrays in an optical cavity.By periodically modulating the microwave fields,the anisotropic parameter can be precisely controlled and tuned between zero and one,enabling the system to transition smoothly from being purely dominated by rotating-wave terms to being exclusively governed by counter-rotating wave excitations.Leveraging this tunability,we demonstrate enhanced preparation of adiabatic superradiant and superradiant solid phases where symmetryprotected energy gaps suppress undesired level crossings.Our approach,combining Rydberg interactions and cavitymediated long-range correlations,establishes a versatile framework for the quantum simulation of light-matter interactions and the exploration of exotic many-body phases.展开更多
In the regime of Rydberg electromagnetically induced transparency, we study the correlated behaviors between the transmission spectra of a pair of probe fields passing through respective parallel one-dimensional cold ...In the regime of Rydberg electromagnetically induced transparency, we study the correlated behaviors between the transmission spectra of a pair of probe fields passing through respective parallel one-dimensional cold Rydberg ensembles.Due to the van der Waals(vdW) interactions between Rydberg atoms, each ensemble exhibits a local optical nonlinearity,where the output EIT spectra are sensitive to both the input probe intensity and the photonic statistics. More interestingly,a nonlocal optical nonlinearity emerges between two spatially separated ensembles, as the probe transmissivity and probe correlation at the exit of one Rydberg ensemble can be manipulated by the probe field at the input of the other Rydberg ensemble. Realizing correlated Rydberg EITs holds great potential for applications in quantum control, quantum network,quantum walk and so on.展开更多
Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays...Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics.展开更多
The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains t...The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions,that is,the same atomic population density and buffer gas pressure,which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom populations.Here,utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure,the height and full width at half maximum of electromagnetically induced transparency(EIT)signal,and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated under conditions of the same Rabi frequencies(saturated laser power).It is identified that EIT signal height is proportional to the cell length,full width at half maximum and sensitivity grow with the increment of cell length to a certain extent.Employing the coherent integration signal theory and atomic linear expansion coefficient method,theoretical analysis of the EIT height and sensitivity are further investigated.The results could shed new light on understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement,communication,and imaging.展开更多
A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excit...A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave(MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency.展开更多
We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangu...We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangular configuration with an additional output site,we study the transport of a single excitation.展开更多
We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the m...We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the microwave(MW)electric field.In addition to the two zero-crossing points interval△f_(zeros),the dispersion signal has two positive maxima with an interval defined as the shoulder interval△f_(sho),which is theoretically expected to be used to measure a much weaker MW electric field.The relationship of the MW field strength E_(MW)and△f_(sho)is experimentally studied at the MW frequencies of 31.6 GHz and 9.2 GHz respectively.The results show that△f_(sho)can be used to characterize the much weaker E_(MW)than that of△f_(zeros)and the traditional EIT–AT splitting interval△f_(m);the minimum E_(MW)measured by△f_(sho)is about 30 times smaller than that by△f_(m).As an example,the minimum E_(MW)at 9.2 GHz that can be characterized by△f_(sho)is 0.056 mV/cm,which is the minimum value characterized by the frequency interval using a vapor cell without adding any auxiliary fields.The proposed method can improve the weak limit and sensitivity of E_(MW)measured by the spectral frequency interval,which is important in the direct measurement of weak E_(MW).展开更多
基金supported by the Natural Science Foundation of Hubei Province of China(Grant No.2025AFB370)。
文摘The vortex dynamics after the initial ring dark solitons in two-component ultracold Rydberg atomic systems have been investigated.The two parameters characterizing the Rydberg long-range interaction—namely,the Rydberg strength and the blockade radius—along with the initial depth,are identified as the main factors that affect the vortex dynamics.In the absence of Rydberg soft-core potential and spin-orbit coupling,the late vortex dipoles move along x-or y-axis first.However,this work demonstrates that,with certain Rydberg strength and blockade radius,the late vortex dipoles move towards the edge at an oblique angle to the coordinate axes,and it reveals that the Rydberg nonlocal nonlinear interaction shortens the lifetime of late vortices.When the intra-component and inter-component Rydberg strengths are different,the backgrounds of the two components gradually complement each other,and the lifetime of late vortices is significantly shortened.The presented results show that the Rydberg dressing breaks the rule that the initial average depth determines the number and paths of vortices.The motion features of vortex dipoles in the ultracold Rydberg atomic system have been ascertained,and their directions of movement can be predicted to some degree based on the rotation directions and initial positions of the vortices.
基金supported by the Science and Technology Commission of Shanghai Municipality (Grant No.24DP2600202)the National Key R&D Program of China (Grant No.2024YFB4504002)+2 种基金Industrial Technology Development Research Program of Shanghai Institute of Optics and Fine Mechanicsthe National Natural Science Foundation of China (Grant No.92165107)the China Postdoctoral Science Foundation (Grant Nos.2024M753359 for S.J.and2022M723270 for X.W.)。
文摘Recently, the rapid progress of quantum sensing research reveals that Rydberg atoms have great potential in becoming high-precision centimeter-scale antennas for low-frequency fields. In order to facilitate efficient and reliable detection of low-frequency fields via Rydberg atoms, we designed and implemented a heterodyne method based on the linear response to external signals under the condition of Rydberg electromagnetically induced transparency(EIT). Instead of relying on observing changes in the absorption of light by Rydberg atoms, our method focuses on the phase modulation effect on the probe laser induced by low-frequency fields via the Rydberg EIT mechanism and utilizes a special demodulation process to accurately retrieve signals including both amplitude and phase. The general principles of our method apply to both electric and magnetic fields, and it is even possible to realize a combination of both functionalities in the same apparatus. In particular, we experimentally demonstrate the full cycle of operations with respect to both cases. In measuring low-frequency electric fields,we discover that the Rydberg dipole–dipole interaction among atoms induces a linear superposition of Rydberg states with different angular momentum, generating a first-order response corresponding to the signature of the linear Stark effect. As Rydberg atoms have excellent coupling strengths with electric fields, our results indicate that our method can hopefully achieve high-precision performance for practical tasks in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.12234020,12474281,12450403,and 12274461)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1193)。
文摘This letter demonstrates an experimental approach to measuring the angular-momentum-resolved population of excited states in laser-produced argon ions.By measuring the spectra of free induction decay emissions corresponding to the resonant transitions between Rydberg states,the relative population of the Rydberg states is obtained with known Einstein A-coefficients.This study deepens the mechanistic understanding of coherent dynamics in laser-driven ionic excited states,and establishes experimental benchmarks essential for validating and refining advanced quantum kinetic models in strong-field physics.
基金supported by the National Natural Science Foundation of China (Nos. 12121004, 12274273, and 12450402)the Science and Technology Department of Hubei Province (No. 2020CFA029)+1 种基金CAS Project for Young Scientists in Basic Research (No. YSBR-091)the Youth Innovation Promotion Association CAS (No. 2021328)。
文摘The ultrafast excitation dynamics of atoms and molecules exposed to circularly polarized two-color(CPTC)laser fields constitute a fascinating topic in attosecond science. Although extensive research has established the relationship between the Rydberg state excitation(RSE) yields and the CPTC field parameters, such as field amplitude ratios and helicity of two components, the role of the relative phase(φ) in modulating RSE efficiency remains unclear. In this work, we theoretically investigate the φ dependence of RSE and ionization yields in the co-rotating and counter-rotating circularly polarized two-color(CPTC) few-cycle laser fields by a semiclassical model. We find that, in co-rotating CPTC fields, both RSE and ionization yields display pronounced oscillations as a function of φ and these oscillations are significantly suppressed in the counter-rotating configuration, particularly for ionization yields. Moreover, the ratio of RSE to ionization yields exhibits an out-of-phase oscillatory pattern between low-and high-intensity regimes. These results can be comprehended by the unique feature of φ dependence of CPTC few-cycle fields, based on our semiclassical analysis. Our results demonstrate that phase-controlled CPTC fields offer a versatile tool for steering ultrafast ionization and RSE dynamics of atoms and molecules.
基金the fundings from National Key R&D Program of China (Grant No. 2022YFA1404002)National Natural Science Foundation of China (Grant Nos. T2495253, U20A20218, 61525504, and 61435011)+4 种基金Anhui Initiative in Quantum Information Technologies (Grant No. AHY020200)Major Science and Technology Projects in Anhui Province (Grant No. 202203a13010001)Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2018490)the fundings from Anhui Provincial Department of Education (Grant No. YQZD2024061)Research Program of Higher Education Institutions in Anhui Province (Grant No. 2024AH050645)。
文摘Developing microwave electric field sensing based on Rydberg atoms has received significant attention due to its unique advantages. However, achieving effective coupling between Rydberg atoms and the microwave electric field in the sensing process is a challenging problem that greatly impacts the sensitivity. To address this, we propose using a microwave resonant cavity to enhance the effective coupling between the Rydberg atoms and the microwave electric field. In our experiment, Rydberg atoms are prepared via a three-photon excitation scheme, and the electric fields are measured without and with a microwave cavity in which the vapor cell is placed inside, respectively. As a result, we achieved an 18 dB enhancement of power sensitivity by adding the cavity,which is an effective enhancement in electric field pulse signal detection. This experimental testing provides a promising direction for enhancing the sensitivity of Rydberg atomic electric field sensors and paves the way for their application in precision electric field measurements.
基金the CAS Project for Young Scientists in Basic Research(No.YSBR-042)the National Natural Science Foundation of China(Nos.12125508,11935020)+2 种基金Program of Shanghai Academic/Technology Research Leader(No.21XD1404100)the Shanghai Pilot Program for Basic Research-Chinese Academy of SciencesShanghai Branch(No.JCYJ-SHFY-2021-010).
文摘There is a growing interest in the rapid assessment of terahertz(THz)spectroscopy owing to its promising application pros-pects in nondestructive testing,security screening,and communication.In this study,we introduce a swift characterization method for THz spectroscopy that utilizes a THz-to-optical conversion system in a warm atomic vapor cell.By subtracting the photoluminescence(PL)spectra of cesium atoms with the THz field from those without the THz field,we obtained differential PL spectra that effectively characterized the 0.548 THz field.The differential PL spectra of Rydberg atoms offer the opportunity to quantify the THz field’s intensity and frequency,potentially paving the way for the development of THz spectroscopy based on warm atomic vapor cells.
基金supported by the Department of Education of Liaoning Province(Grant Nos.LJKZ1015,LJ2020005,LJKZZ20220120)the Natural Science Foundation of Liaoning Province(Grant Nos.2020-BS-234,2021-MS-317,2022-MS-372)the Program of Liaoning Bai Qian Wan Talents Program(Grant No.2021921096)。
文摘Conversion between different types of entangled states is an interesting problem in quantum mechanics.But research on the conversion between the Greenberger-Horne-Zeilinger(GHZ)state and Knill-Laflamme-Milburn(KLM)state in an atomic system has not been reported.In this paper,we propose a scheme to realize the interconversion(one-step)between the GHZ state and KLM state with Rydberg atoms.By utilizing Rydberg-mediated interactions,we simplify the system.By combining a Lie-transform-based pulse design,the evolution path is built up to realize interconversion of the GHZ state and KLM state.The numerical simulation result shows that the present scheme is robust against decoherence and operational imperfection.
基金supported by the Natural Science Foundation of Chongqing,China(Grant Nos.CSTB2024NSCQ-MSX0880 and CSTB2024NSCQ-MSX1187)the Fund from Chongqing University of Posts and Telecommunications(Grants Nos.A2024-33 and A2023-54).
文摘We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator(LO)microwave field strength.By employing parallel and perpendicular alignments of laser and microwave polarizations in our experimental setup,we study the Autler-Townes(AT)splitting spectrum and optical response of probe transmission,and analyze their sensing effects.The results show that the parallel polarization configuration offers higher gain and better sensitivity than the perpendicular configuration.We achieve a sensitivity of 4.150(69)nV·cm^(-1)·Hz^(-1/2)at an LO microwave field strength of 1.74 mV/cm.This work demonstrates the significant role of polarization alignment on the performance of Rydberg atom-based microwave sensors.
基金Project supported by the National Natural Science Foundation of China (Grant No. U22B2095)the Civil Aerospace Technology Research Project (Grant No. D010103)。
文摘The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.
基金supported by the National Natural Science Foundation of China(Grant No.12274045)the National Natural Science Foundation of China(Grant No.12347101)the Program of the State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF202211).
文摘The anisotropic Dicke model offers a platform for the exploration of numerous quantum many-body phenomena.Here,we propose a Floquet-engineered scheme to realize such a system with strong dipole-dipole interactions using Rydberg atom arrays in an optical cavity.By periodically modulating the microwave fields,the anisotropic parameter can be precisely controlled and tuned between zero and one,enabling the system to transition smoothly from being purely dominated by rotating-wave terms to being exclusively governed by counter-rotating wave excitations.Leveraging this tunability,we demonstrate enhanced preparation of adiabatic superradiant and superradiant solid phases where symmetryprotected energy gaps suppress undesired level crossings.Our approach,combining Rydberg interactions and cavitymediated long-range correlations,establishes a versatile framework for the quantum simulation of light-matter interactions and the exploration of exotic many-body phases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11874004, 1124019, 12204137, and 12404299)the Hainan Provincial Natural Science Foundation of China (Grant No. 122QN302)supported by the specific research fund of The Innovation Platform for Academicians of Hainan Province (Grant Nos. YSPTZX202215 and YSPTZX202207)。
文摘In the regime of Rydberg electromagnetically induced transparency, we study the correlated behaviors between the transmission spectra of a pair of probe fields passing through respective parallel one-dimensional cold Rydberg ensembles.Due to the van der Waals(vdW) interactions between Rydberg atoms, each ensemble exhibits a local optical nonlinearity,where the output EIT spectra are sensitive to both the input probe intensity and the photonic statistics. More interestingly,a nonlocal optical nonlinearity emerges between two spatially separated ensembles, as the probe transmissivity and probe correlation at the exit of one Rydberg ensemble can be manipulated by the probe field at the input of the other Rydberg ensemble. Realizing correlated Rydberg EITs holds great potential for applications in quantum control, quantum network,quantum walk and so on.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1404204 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12274086, 11534001 and 11925402)+5 种基金funding from the National Science Foundation of China (Grant Nos. 12274046, 11874094, 12147102, and 12347101)Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-JQX0018)the Fundamental Research Funds for the Central Universities (Grant No. 2021CDJZYJH-003)Xiaomi Foundation/Xiaomi Young Talents Programthe supports of the start-up funding of Westlake Universitysupport from the Natural Sciences and Engineering Research Council of Canada (NSERC) through Discovery Grants。
文摘Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61901495 and 12104509)
文摘The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions,that is,the same atomic population density and buffer gas pressure,which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom populations.Here,utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure,the height and full width at half maximum of electromagnetically induced transparency(EIT)signal,and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated under conditions of the same Rabi frequencies(saturated laser power).It is identified that EIT signal height is proportional to the cell length,full width at half maximum and sensitivity grow with the increment of cell length to a certain extent.Employing the coherent integration signal theory and atomic linear expansion coefficient method,theoretical analysis of the EIT height and sensitivity are further investigated.The results could shed new light on understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement,communication,and imaging.
基金Project supported by the Shandong Natural Science Foundation,China (Grant No. ZR2021LLZ006)the National Natural Science Foundation of China (Grant Nos. 61675118 and 12274123)+1 种基金the Taishan Scholars Program of Shandong Province,China (Grant No. ts20190936)the Shandong University of Science and Technology Research Fund,China(Grant No. 2015TDJH102)。
文摘A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave(MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974331 and 12374479)。
文摘We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangular configuration with an additional output site,we study the transport of a single excitation.
基金Project supported by Beijing Natural Science Foundation(Grant No.1212014)the National Key Research and Development Program of China(Grant Nos.2017YFA0304900 and 2017YFA0402300)+4 种基金the National Natural Science Foundation of China(Grant Nos.11604334,11604177,and U2031125)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-3)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF201807)the Fundamental Research Funds for the Central UniversitiesYouth Innovation Promotion Association CAS。
文摘We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the microwave(MW)electric field.In addition to the two zero-crossing points interval△f_(zeros),the dispersion signal has two positive maxima with an interval defined as the shoulder interval△f_(sho),which is theoretically expected to be used to measure a much weaker MW electric field.The relationship of the MW field strength E_(MW)and△f_(sho)is experimentally studied at the MW frequencies of 31.6 GHz and 9.2 GHz respectively.The results show that△f_(sho)can be used to characterize the much weaker E_(MW)than that of△f_(zeros)and the traditional EIT–AT splitting interval△f_(m);the minimum E_(MW)measured by△f_(sho)is about 30 times smaller than that by△f_(m).As an example,the minimum E_(MW)at 9.2 GHz that can be characterized by△f_(sho)is 0.056 mV/cm,which is the minimum value characterized by the frequency interval using a vapor cell without adding any auxiliary fields.The proposed method can improve the weak limit and sensitivity of E_(MW)measured by the spectral frequency interval,which is important in the direct measurement of weak E_(MW).